نویسندگان

1 پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

2 پژوهشگاه هوافضا ، وزارت علوم، تحقیقات و فناوری، تهران، ایران

چکیده

در این مقاله، گرمایش آیرودینامیکی تولیدشده بر روی بدنة یک کاوشگر فضایی به روش عددی با استفاده از نرم‌افزار فلوئنت و با درنظر گرفتن اندرکنش گرمایشی سیال و سازه محاسبه شده است. به منظور حل همزمان معادلات گرمایش در جامد و سیال، از شرط مرزی کوپلینگ در دیوارة بدنه استفاده شده است؛ به‌طور‌ی‌که مقادیر دما و شار حرارتی در آن محاسبه می‌شود. مزیت این روش آن است که می‌توان مقادیر دما را در هر نقطه‌ای از پوسته بدنه با یا بدون تقارن محوری و حتی اجزای متصل به آن در زوایای حمله مختلف محاسبه کرد. در این مقاله، نحوة انجام شبیه‌سازی عددی با درنظر گرفتن اثرات لایه مرزی و ضخامت دیوارة سازه و همچنین اثر مدل‌های توربولانس، به صورت کامل شرح داده شده است. نتایج در قالب کانتورهای فشار، سرعت و دما، مقادیر شار حرارتی و همچنین فشار و دمای نقطة سکون دماغه ارائه شده است. در این تحقیق از دو روش عددی و تحلیلی برای صحه‌گذاری مقادیر دمای نقطة سکون و شار حرارتی استفاده شده که دقت خوبی را در نتایج نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Aerodynamic Heating Prediction of Flying Body Using Fluid-Solid Conjugate Heat Transfer

نویسندگان [English]

  • Sohayla Abdolahi 1
  • Fskhri Etemadi 1
  • Mohammad Ebrahimi 2

1 Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

2 Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

چکیده [English]

In this study, the aerodynamic heating of the flying body during powered flight phase has been numerically investigated. The conjugate simulation of fluid heat transfer and solid heat conduction has been considered. To this aim, the coupling boundary condition has been used for body shell that allows the conjugate heat transfer investigation in the fluid and solid domains simultaneously. The model has been considered as a circular cylinder and spherically blunted cone nose with 350mm in diameter. The investigation has been carried out at different Mach number from 1.5 to 4.2 to cover range of supersonic flow. The advantage of this method is that the wall temperature and heat flux ​​in any part of the nose and body shell with or without axial symmetry, connected components and other protuberances could be calculated at different angles of attack. Finally, the approach has been validated through the results of analytical and numerical methods for aerodynamic heating of axisymmetric vehicles.

کلیدواژه‌ها [English]

  • Aerodynamic heating
  • numerical simulation
  • Wall temperature
  • heat flux
  • Conjugate heat transfer
  1. Noori, S., Hossein, S. A. and Ebrahimi, M., “An Approximate Engineering Method for Aerodynamic Heating Solution Around Blunt Body Nose,” World Academy of Science, Engineering and Technology, Vol. 6, No.70, 2012, pp. 833-837.
  2. Parhizkar, H. and Karimian, S.M.H., “Application of Axisymmetric Analog to Unstructured Grid for Aeroheating Prediction of Hypersonic Vehicles,” International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 19. No. 3/4, 2009, pp. 501 – 520.
  3. Shaw, S.T. and Qin, N., “Solution of The Navier-Stokes Equations for The Flow around an Airfoil in Oscillating Free Stream,” Proceeding of The 20th Congress of The International Council of The Aeronautical Sciences, Vol. 1, 1996, pp19-29.
  4. Miyaji, K. and Fujii, K., “Numerical Analysis of Three-Dimensional Shock/Shock Interaction and The Aerodynamic Heating,” AIAA 37th Aerospace Sciences Meeting, AIAA-99-0144, Nevada, USA, 1999.
  5. Scalabrin, L.C. and Boyad, L.D., “Development of an Unstructured Navier-Stokes for Hypersonic Nonequilibrium Aerothermodynamics,” 38th AIAA Thermo Physics Conference, Toronto, Ontario Canada, June 2005.
  6. Mcwherter, M., Noack, R.W. and Oberkampf, W.L., “Evaluation of Boundary-Layer and Parabolized Navier-Stoks Solutions for Re-Entry Vehicles,” Journal of Spacecraft and Rockets, Vol. 23, No. 1, 1986, pp.70-78.
  7. Guidos, B. J. and Weinacht, P., “Parabolized Navier-Stokse Computation of Surface Heat Transfer Characteristics for Supersonic and Hypersonic KE Projectiles,” US Army Research Laboratory Report, AD-A268-858, ARL-TR-191, August 1993.
  8. Birch, T., Prince, S., Ludlow, D.K. and Qin, N., “The Application of A Parabolized Navier-Stokes Solver to Some Hypersonic Flow Problems,” AIAA Paper, AIAA 2011- 1753, 2001.
  9. Esfahanian, V., Hejranfar, K. and Mahmoodi, D.H., “Implementation of High-order Compact Finite-Difference Method to Iterative Parabolized Navier-Stokes Equations,” Proceedings of The 25thInternational Congress of The Aeronautical Sciences, Hamburg, Sept, 2006.
  10. Noori, S., Ghasemloo, S. and Mani, M., “A New Method for Solution of Viscous Shock Layer Equations,” Journal of Aerospace Engineering, Vol. 224, No. 6, Part G, 2010, pp. 719-729.
  11. Davis, R.T., “Numerical Solution of The Hypersonic Viscous Shock- Layer Equations,” AIAA Journal, Vol. 40, No. 5. 1970, pp.843-851.
  12. Dejarnette, F.R., Hamilton, H.H., Weilmuenster, K.J. and Cheatwood, F.M., “A Reviw of Some Approximate Methods Used in Aerodynamic Heating Analysis,” Journal of Thermophysics, Vol. 1, No. 1, 1978, pp.5-12.
  13. Shimshi, J.P. and Walberg, G.D., “Aerodynamic Heating to Spherically Blunted Cones at Angle of Attack,” Journal of Spacecraft and Rockets, Vol. 32, No. 33, 1995, pp. 559-561.
  14. Thompson, R. A., “Comparison of Nonequilibrium Viscous Shock-Layer Solutions With Shuttle Heating Measurements,” Journal of Thermophysics and Heat Transfer, Vol. 4, No. 2, 1990, pp. 162-169.
  15. Hamilton, H. H., Greene, F. A. and Dejarnette, F. R., “Approximate Method for Calculating Heating Rates on Three-Dimensional Vehicles,” Journal of Spacecraft and Rockets, Vol. 31. No. 3, 1994, pp. 345-354.
  16. Riley, C.J. and Dearnette, F.R., “Engineering Aerodynamic Heating Method for Hypersonic Flow,” Journal of Spacecraft and Rockets, Vol. 29. No. 3, 1992, pp. 327-339.
  17. Hoseini, S. A., Noori, S., Ebrahimi, M., “Aerodynamic Heating Analysis of Payload and External Components During Re-Entry Phase,” International Conference of The Mechanical Engineering and Advanced Technology, Islamic Azad University, Esfahan, 2012, (In Persian).
  18. Eggers, , Hansen, F. C. and Cunningham, B. E., “Stagnation-Point Heat Transfer to Blunt Shapes in Hypersonic Flight, Including Effects of Yaw,” Naca Technical Note 4229, 1958, (In Persian).
  19. Kamali, R. and et. al., “Valuation of The Boundary Layer Equations and Engineering Approximat Method for Aerodynamic Heating of Re-Entry Axisymmetric Vehicles,” Journal of Space Science and Technology, 6, No. 3, 1392, pp.39-48 (In Persian).
  20. Kamali, R. and Salimi, R., “Hypersonic Flow Solution Around Re-Entry Axisymmetric Bodies Using The Laminar Boundary Layer Equations and Integrating-Matrix Method,” HAC2012 Conference, Tehran, 1391.
  21. Kamali, R. and et. al., “Software Development for Aerodynamic Heating of Three-Dimensional Objects Using Boundary Layer Equations,” Technical Report No. AHBEN-HBL-91-51-1-1-1, Aerospace Research Institute, 1391, (In Persian).