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Approximate Viscous Shock-Layer Analysis
of Axisymmetric Bodiesin Perfect Gas
Hypersonic Flow
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In this paper, an approximate axisymmetric method is developed which can reliably
calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Madlen’s
second-order pressure expression is used instead of the normal momentum equation. The
combination of Maden's second-order pressure expression and viscous shock layer
equations is developed to accurately and efficiently compute hypersonic flow fields of
perfect gas around blunt-body configurations. The results show that, this combination leads
to more accurate solutions and less extensive computer run times in the preliminary design
environment. Furthermore, the utility of Cebeci-Smith turbulence model is adequate for
application to long slender bodies. The results of these computations are found to be in good
agreement with available numerical and experimental data.
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Nomenclature

. * 2
static enthalpy, h /V%

metrics
Mach number

body nose radius

. . *® ok
radius measured from axis of symmetry, r /R

. * %
coordinate measured along the shock wave, s /R

temperature, T*C;x V2
distance normal to body

density, p* /poo
velocity component tangent to the shock, u*/Vzo

velocity component normal to the shock, v /V_,
Reynolds number parameter, (u, /o, u.R)"

body angle

normalized n coordinate, 1-n/n,

L * %
viscosity, u /pref
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normalized s coordinate, & =s
wall value

free stream condition
dimensional quantities

I ntroduction

There is a continued interest in developing improved
engineering methods, thus by using the approached
introduced in the presentwork forthe preliminary
design, extensive computer run times can be avoided.
The approximate viscous shock layer (VSL) equations
have been generallyappliedto predict the flow field and
convective heat flux over hypersonic reentry vehicles.
The VSL equations are obtained from the full Navier-
Stockes equations by keeping both viscous and
inviscid terms up to the second order of the inverse
square root of the Reynolds number. The VSL
equations are of mixed hyperbolic-elliptic type in the
subsonic nose region of a blunt body and are of mixed
hyperbolic-parabolic type in the supersonic region [1].
The approximate VSL solver requires less computing
time than the fullVSL solvers[2]. Therefore, an
approximate method is required for solving VSL
equations to provide quick and less expensive
engineering estimates. Grantz et al. [3] developed an
approximate axisymmetric VSL approachwhich was
faster than full VSL methods. However, their method
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had three disadvantages: (1) too many iterations were
required for the shock shape convergence,(2) the
solution was inconsistent near the stagnation line, and
(3) the node spacing across the shock layer was the
source of oscillations in the profiles of shock layer
properties.

In addition, this method did not reduce the CPU
requirements as compared with the full VSL equations.
Thus, there exists a need for different approximate
VSL approaches to bediscovered.In the previous
methods, an initial shock shape was required to start
the solution of VSL equations. This was obtained by
various procedures (thin viscous shock layer, inviscid
solution,...),each requiring considerable computational
effort. Moreover, the shock shape extending to the
entire length of the body is globally iterated. The
initial shock shape generation and the global iterations
over the entire length of the body required
considerable computational effort and run time,
respectively. In this method shock shape is determined
using Riley and DeJarnette algorithms [4,5] which are
3 to 5 times faster than full viscous shock layer
methods [6].The present approach generates its own
shock shape as a part of solution and provides a
smooth shock shape in subsonic and supersonic
regions. Therefore, the input shock shape obtained
from a different solution is not required. This
approacheliminates the need for initial shock shape,
which was required by previous methods of solution.
Moreover, the global iterations are limited to the
subsonic region which is a small region in the
hypersonic flow over the blunt bodies. The VSL
equations are solved in a shock oriented (rather than
the traditional body oriented) coordinate system. Note
that the use of a body coordinate system introduces
discontinuities in the solution of governing equations
associated with the surface curvature discontinuity,
such as at the sphere—cone tangency point of a
spherically blunted cone. This method is an excellent
tool for parametric study and preliminary design of
hypersonic vehicles and provides a computational
capability which reduces the CPU times and expands
the range of application for the prediction of
hypersonic  heating rates.The above-mentioned
disadvantages of Grantz's method were resolved by
this method. The accuracy of the developed code is
validated by comparing the computational results with
other solutions and available experimental data.

Governing Equations

The Viscous Shock Layer equations written in
curvilinear coordinates for axisymmetric flow are
presented below. In this work, these equations are
written in a nondimensional form:

Continuity:

0 0
é(Pth)JF%(/-’Vhlhg)—o (D

S. Ghasemloo and S. Noori

N-momentum:

2
o LN, v um A b, @)
hyés on h on | on

S-momentum:

p[g@ L uvah,}ri@:

+V—+——
hdos on hon) hos

SHIFENY WEL WY N ©
on|"\on hon hon honfon h on

Energy:

uoch oh) uop op
pl——+V— |- ——-V—=
hos on) hos on

)0 (uoh) wohf1oh 1 0oh

g {an[manJ+man(w+wJ+ @)
ou oh)1ou udh

A an—uan)(han-m}

Where u and v are velocity components, h1 and

h3 are Metrics (shape factor) and ¢ is Reynold's

number that:
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In the above equation R, is nose radius of
curvature. The superscript of * shows the dimensional
values. These equations could be transformed to either
a body-normal or a shock-normal system. Here, we
have a shock-normal system. The shock-oriented
coordinate system is shown in Figure 1. The governing
equations are transformed from (s,n) to a new
computational coordinate system of (&, ), where:

n —1-— @)
Np

g=s

Energy and S-momentum equations can be written as:
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Where w represents the dependent variables of u
(velocity components) and h (enthalpy) for momentum
equations and energy equation, respectively. Also, by
using the Cebeci-Smith turbulence model [7] in this
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study, its coefficient would be.- _ 4, and the
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coefficients for above equations with turbulence
coefficient are:
&-momentum :
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Fig. 1 Shock-oriented coordinate system

Where subscript s identifies shock value. In this
approach, Maslen’s second order pressure equation is
used instead of the normal momentum equation:
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Also, the shock layer thickness is calculated by:
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The above set of equationsaresupplemented by
the equation of state.

Stagnation Line

The stagnation line is a singularity in the standard VSL
equations. This singularity is handled by representing
the dependent variables on the stagnation line with a
truncated power series. In the shock-oriented system,
an explicit limiting form of the governing equations as
£—0 can be calculated [8] since Maslen's relation

provides analytic derivatives of the pressure. Thus, a
set of ordinary differential equations which
areconsistent with the general governing equations can
be obtained.

Shock shape

In the present approach, the shock shape is generated
as part of the solution. The shock shape is calculated
using the method which is presented in Ref. 4. As
mentioned earlier, the subsonic-transonic region is
elliptic in nature, therefore, a marching scheme is not
well posed. Thus, the complete shock shape for the
entire subsonic-transonic region must be determined
iteratively. A marching procedure is then used
downstream of the subsonic-transonic region where
the inviscid layer is supersonic. Generally, the three-
dimensional shock surface in the subsonic-transonic
region can be represented by three longitudinal conic
sections blended in the circumferential direction with
an ellipse as:

r=~f(x¢ 13)

Where (X1.9) are cylindrical coordinates. The x axis
is aligned with the freestream velocity vector. Also
f(x,d) is defined as:

f 2[B(x)cos2 (¢)+sin2(¢)} +fC(X)cos@)=D(x)  (14)

in which
) ) (15)
; CO=BX)(f;—f); D(X)=f,

Note that f(x,9) is the radial coordinate of the 3D
shock surface in a shock cylindrical coordinate system.
The equation of the longitudinal conic sections is
given by

12 +byx? — 20+ 2ddfy =0 k=123 (16)

Where k represents shock profiles for ¢=0°, 90°
and 180°, respectively. The shock shape defined
above, includes nine parameters of bk, ck and dk
where k=1,2,3. For an axisymmetric flow, the total
number of parameters governing the shock surface is
reduced to bl and c1. The global iteration of the shock
surface in the subsonic region involves matching the
shape computed from the VSL equations with the
actual body geometry. To insure a good starting
solution for the downstream marching procedure, the
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matching body points are located at the end of the
subsonic region where the inviscid layer is supersonic.
Note that in this procedure flowfield is also solved
behind the shock wave. First, initial values are guessed
for the above two parameters. The appropriate initial
shock shape is produced by the values of 0.98 and 1.2
for bl and cl. Since the initial shock shape (and the
resulting jump condition) is known, the governing
equations can be solved for the entire subsonic region

to obtain the calculated shock layer thickness, N, for

all stations. Next the calculated thickness can be
determined from the continuity equation:

I i
[ o[ m(nn—ndnn}ﬁ +[:jmdnnjm—;—o (a7
S0
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The values for the calculated shock layer
thickness at the two stations near the end of the
subsonic region are compared with the values dictated
by the geometry. Based on the calculated and the
geometric shock layer thickness, new values of shock
shape parameters bl and cl are computed. With each
variation of these two parameters, the flowfield is
solved for the entire subsonic region. This procedure is

repeated until the calculated values of N at these two

stations match the geometric values. Downstream of
this region, the shock shape is calculated through a
marching scheme requiring no global iterations. For
the supersonic region, the shock shape at the current
station is described by a truncated Taylor's series [5] .

dr, 2| (drg d’rg
rs=Tq, +Axs[dxsll +A)6(S[2[dxsz l_l J{dxsz N (18)

Where the shock slope is given by
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In these equations, the only unknown is the

second derivative ofl with respect to X (which is

proportional to the shock curvature) at the current
station. The initial value for this parameter is
calculated by linear extrapolation of its values at the
previous two stations. Once the shock geometry and
the corresponding jump conditions are constrained, the
governing equations are solved. Then the calculated
and the geometric values of n, are compared to
determine anerror (derr ). Through successive
application of the secant method (accompanied by a
solution to the fluid equations), derr converges to a
specified tolerance (1x10™). In summary, in the

subsonic-transonic region, shock shape is specified
usingan algebraic relation and is corrected through
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global iterations throughout that region. The shock
shape is computed as part of the solution beyond the
subsonic-transonic region. Thus, the shock shape is not
required as an input by the user.

Method of Solution

For the solution of governing equations, the shock
shape should be guessed. In this work, for stagnation
line, in the subsonic or supersonic regions, the shock
shape is calculated from the approximate method of
Riley and DeJarnette. Since the shock shape is known,
the approximate viscous shock layer equations can be
solved in the shock layer along a line normal to the
shock surface. The governing equations are solved
along the stagnation line and then marched
downstream and around the body. In each marching
step the pressure is calculated from Maslen’s relation
in the shock layer, then the streamwise momentum and
energy equations (for determining u, h) are solved
using a fully implicit method in the shock layer.
Density is calculated from the equation of state.
Finally the normal component of velocity is
determined by the solution of continuity equation.
Since the subsonic-transonic region is elliptic in
nature, this portion of the flowfield must be solved in a
global fashion. Aft of the subsonic-transonic region,
since the inviscid layer is supersonic,a marching
technique is employed.For this region, the shock shape
at the current station is extrapolated from the previous
station.

The finite-difference  representations  are
substituted for the partial derivatives. In this study, for
an arbitrary point j at station k:

R _ 2M’i,j+l _(1+ﬁ)/vi,j +M,j—lJ

on, Ay |+ AT,
W W, —(1-8T W, - AW, 0
on, An,  +p'An,
o6 A4
Where
A, =10 =1
An,
p= T;J 1)
nj
Afi = fi - fi—l

Therefore, the finite differenced equations are
written again asbelow:

AW, |

i,j-1

+BW; +CW, ;. =D (22)

Where
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By using these equations, the shock layer
properties are obtained.

Results

The following section demonstratescomparisons of the
predicted wall heat-transfer distribution with the
available experimental data [9]. The algorithms
employed here are fully-implicit. The case examined is
flow over a 5 deg half-angle spherically blunted cone
at zero angle of attack. The free stream conditions are
M= 15, T,,=266 k and p,.=0.001788 Kg/m3. The wall
temperature is T, =1256 k. also, R;,.=0.0381 m.

Figures 2 and 3 show the heating rate for
Rpose=0.0381 m. These figures, illustrate the laminar
flow and Turbulence flow, respectively. Good
agreement can be observed between the results of
present method and experimental data. The negligible
difference between these results is due to using an
approximate VSL equation. It is believed that Maslen's
pressure relation is the source of this deviation. Since
this method is faster than the method of Ref. [10], it is
appropriate for the preliminary design. In this figure,
the maximum error of the heating rate respect to the
experimental data is 6% for laminar flow and 10% for
turbulence flow. In addition, Figure 4 shows the
heating rate near the nose and indicates these
differences clearly.
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Fig.2 Heatingrate in laminar flow
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Fig.4 Heating rate near the nose

Figure 5 shows the body pressure distribution
over this case. Grantz in Ref. [3] has explained that the
agreement between the experimental and calculated
pressure from Maslen’s relation is excellent. This
figure shows the error of pressure is negligible (less
than 5 percent).
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Fig.5 Pressure distribution along the body
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Figure 6 indicates the pressure distribution near the
nose region. Grantz's method and present method used
the Maslen's expression for the calculation of pressure.
The error of this figure is less than 5 percent.
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=

Fig. 6 Pressure distribution near the nose

In Figure 7, the shock layer is shown. The
approximate techniques agree with the VSL results.
However, inthe close-upgiven in Figure 8, note that the
two approximate approaches yield a thinner shock
layer than the VSL algorithm in the overexpansion
region.
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Fig.7 Shock shape along the body
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Other figures provide extra information on the
stagnation region results. In Figure 9, the stagnation
region pressure profile for all three methods is
exposed. One can conclude that there is excellent
agreement between these results; i.e., about three
percent. The aforementioned error is due to the
utility of approximate Maslen'ssecond-order pressure
expression. Density profile comparison results are
presented in Figure 10.The significant error is not
shown since this parameter relates the pressure and
pressure expression which is approximately valid in all
flowfield. As the result, good agreement for the
density profile is included in those areas where
the pressure profile is well-predicted. As it is
evidentin Figure 11, the normalized tangent
velocity profile (=u/u,) has a smooth distribution

in the stagnation region. These results are in close
agreement with each other, although the VSL
results are different. This difference may be due to
the VSL limiting form of the streamwise
momentum equation. The error of this result is
roughly two percent in this region. In Figure 12, the
normal velocity results of the VSL and present
method are virtually identical, while the results of
Ref. [11] differ from them slightly. The
approximate relation for v used in Ref. [11] is the
source of this difference. Figure 13 shows that the
enthalpy profile of the three methods is virtually
identical on the stagnation line. It is dictated by
Energy equation solving. The error of this profile is
about 2 percent.
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Fig. 13 Enthalpy profile comparison in stagnation region

Conclusion

In this investigation, a method is developed to solve
hypersonic flowfield about axisymmetric blunt bodies.
This method, when compared to VSL solutions, is
provedto be smooth and accurate for perfect gases.
Moreover, governing equations are solved in a shock-
oriented coordinate system. Usingthe present method the
surface heating rates and flowfield properties can
bepredicted faster in comparison with the other methods.
Since the subsonic region is only a small portion of the
flow field for hypersonic flows over slender bodies, and
the global iteration is confined tothis region only in the
present method, a significant reduction in CPU time is
achieved. Moreover, by using the shock coordinated
systems, the junction point problem in sphere-cone
configurations is solved. Results of the present method
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compare quite favorably with experimental data and other
predictions.  Furthermore, these calculations have
excellent agreement between the VSL and the
approximate approaches and this event is seen in the nose
region specially. This method calculates their stagnation
values more smoothly than the VSL solution and some
approximate approaches.
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