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In this paper, an approximate axisymmetric method is developed which can reliably 
calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Maslen’s 
second-order pressure expression is used instead of the normal momentum equation. The 
combination of Maslen’s second-order pressure expression and viscous shock layer 
equations is developed to accurately and efficiently compute hypersonic flow fields of 
perfect gas around blunt-body configurations. The results show that, this combination leads 
to more accurate solutions and less extensive computer run times in the preliminary design 
environment. Furthermore, the utility of Cebeci-Smith turbulence model is adequate for 
application to long slender bodies. The results of these computations are found to be in good 
agreement with available numerical and experimental data. 
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Nomenclature12 

static enthalpy, 2/V*h   h  

metrics 1 h,h
 

Mach number M  

body nose radius nR
 

radius measured from axis of symmetry, *
n/R*r  r  

coordinate measured along the shock wave, *
n/R*s  s  

temperature, 2
∞

*
P

* /VCT   T  
distance normal to body y 

density, ∞/*   ρ 

velocity component tangent to the shock, *
∞/V*u  u 

velocity component normal to the shock, *
∞

* /Vv  v 

Reynolds number parameter, 1/2*
n

*
n

*
ref )Ru/(μ    

body angle 
b  

normalized n coordinate, 1-n/nb n
 

viscosity, *
ref/μ*u  μ 
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normalized s coordinate, ξ = s ξ
wall valuew
free stream condition∞
dimensional quantities*

Introduction 
There is a continued interest in developing improved 
engineering methods, thus by using the approached 
introduced in the presentwork forthe preliminary 
design, extensive computer run times can be avoided. 
The approximate viscous shock layer (VSL) equations 
have been generallyappliedto predict the flow field and 
convective heat flux over hypersonic reentry vehicles. 
The VSL equations are obtained from the full Navier-
Stockes equations by keeping both viscous and 
inviscid terms up to the second order of the inverse 
square root of the Reynolds number. The VSL 
equations are of mixed hyperbolic-elliptic type in the 
subsonic nose region of a blunt body and are of mixed 
hyperbolic-parabolic type in the supersonic region [1]. 
The approximate VSL solver requires less computing 
time than  the fullVSL solvers[2]. Therefore, an 
approximate method is required for solving VSL 
equations to provide quick and less expensive 
engineering estimates. Grantz et al. [3] developed an 
approximate axisymmetric VSL approachwhich was 
faster than full VSL methods. However, their method 
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had three disadvantages: (1) too many iterations were 
required for the shock shape convergence,(2) the 
solution was inconsistent near the stagnation line, and 
(3) the node spacing across the shock layer was the 
source of oscillations in the profiles of shock layer 
properties.  

In addition, this method did not reduce the CPU 
requirements as compared with the full VSL equations. 
Thus, there exists a need for different approximate 
VSL approaches to bediscovered.In the previous 
methods, an initial shock shape was required to start 
the solution of VSL equations.  This was obtained by 
various procedures (thin viscous shock layer, inviscid 
solution,…),each requiring considerable computational 
effort. Moreover, the shock shape extending to the 
entire length of the body is globally iterated. The 
initial shock shape generation and the global iterations 
over the entire length of the body required 
considerable computational effort and run time, 
respectively. In this method shock shape is determined 
using Riley and DeJarnette algorithms [4,5] which are 
3 to 5 times faster than full viscous shock layer 
methods [6].The present approach generates its own 
shock shape as a part of solution and provides a 
smooth shock shape in subsonic and supersonic 
regions. Therefore, the input shock shape obtained 
from a different solution is not required. This 
approacheliminates the need for initial shock shape, 
which was required by previous methods of solution. 
Moreover, the global iterations are limited to the 
subsonic region which is a small region in the 
hypersonic flow over the blunt bodies. The VSL 
equations are solved in a shock oriented (rather than 
the traditional body oriented) coordinate system. Note 
that the use of a body coordinate system introduces 
discontinuities in the solution of governing equations 
associated with the surface curvature discontinuity, 
such as at the sphere–cone tangency point of a 
spherically blunted cone. This method is an excellent 
tool for parametric study and preliminary design of 
hypersonic vehicles and provides a computational 
capability which reduces the CPU times and expands 
the range of application for the prediction of 
hypersonic heating rates.The above-mentioned 
disadvantages of Grantz's method were resolved by 
this method. The accuracy of the developed code is 
validated by comparing the computational results with 
other solutions and available experimental data. 

Governing Equations 
The Viscous Shock Layer equations written in 
curvilinear coordinates for axisymmetric flow are 
presented below. In this work, these equations are 
written in a nondimensional form: 
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Where u and v are velocity components, 1h  and 

3h  are Metrics (shape factor) and  is Reynold's 

number that: 
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In the above equation Rn is nose radius of 
curvature. The superscript of * shows the dimensional 
values.  These equations could be transformed to either 
a body-normal or a shock-normal system. Here, we 
have a shock-normal system. The shock-oriented 
coordinate system is shown in Figure 1. The governing 
equations are transformed from (s,n) to a new 
computational coordinate system of ( ,

n ), where: 
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n
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Where w represents the dependent variables of u 
(velocity components) and h (enthalpy) for momentum 
equations and energy equation, respectively. Also, by 
using the Cebeci-Smith turbulence model [7] in this 

study, its coefficient would be



 t , and the 



  
 
 

c
c


E
 

a
u

W



Approximate Visc

coefficients f
coefficient are
-momentum :




































 















 





nb

nb

b

n

b

n

h

h

hn

n

n

p

h

n

u

h

u

















1

1
2

2

2

2

1

1

12

1

11

Energy: 

 




































































 









2

2

2

2

2

2

1

1

Pr

Pr
1

Pr

1

nb

tb

nbnb

b

n

u

n

n

n

p

n

v

d

dn

n

h

h

u













Fig. 1

Where su
approach, Mas
used instead of

2
 sss

s

urk
PP

Where 

s
   

Also, the 

2

(cos2

1

0

1

0
















ns udr

u





cous Shock-Layer

for above eq
: 
: 





































n

n

n

b

bn

b

h

h

h

uu

p

d

dn

n

vu

d

dn













3

3

1

1
1

1

1






































































1

1

2

3

3

1

1

2

11

Pr

Pr
1

Pr

nnn

nnn

nt

nbn

b

hh

h

u

h

h

h

h

h

h

h

n

vh

d

n










1 Shock-oriented

ubscript s iden
slen’s second 
f the normal m

4

sin
)1( 


 sv

shock layer th

0

)1

2

2












sbn

bnn

rn

nd  

 

r Analysis of Axisy

quations with 






































n

n

nn

h

uu

h

h

h

uu











1

1

1

1





























































2

1

1

1

1

n

n

b

b

n

h

h

u

d

dn

n

p

h

u









d coordinate syst

ntifies shock va
order pressure

momentum equa


cos

1 2






  


 ss rk

ickness is calc

ymmetric Bodies i

turbulence 

(9) 





















n

h


1

 








n

p

  

(10) 

 

tem 

alue. In this 
e equation is 
ation: 

(10) 12   

(11) 

ulated by: 

(12) 

in... 

The 
the equatio

Stagnatio
The stagna
equations.
the depen
truncated 
an explicit

0  ca

provides a
set of 
areconsist
be obtaine

Shock sh
In the pre
as part of 
using the 
mentioned
elliptic in 
well pose
entire sub
iteratively
downstrea
the invisc
dimension
region can
sections b
an ellipse 

,( xfr 

Where (x

is aligned
f(x,ф) is d

co)(2 xBf 


in which 

1

2)(
ff

f
xB 

Note 
shock surf
The equa
given by 

22  xkbkf

 Whe
and 180
above, in
where k=
number o
reduced to
surface in
shape com
actual bo
solution f

Journal of S
Vol. 7 / No. 1 

above set of 
on of state.  

on Line 
ation line is a s
. This singular

ndent variables
power series. 
t limiting form

an be calculate

analytic deriva
ordinary di

tent with the ge
ed. 

hape 
esent approach
f the solution. 

method whic
d earlier, the 

nature, theref
ed. Thus, the c
bsonic-transoni
y. A marchin
am of the sub
cid layer is sup
nal shock surf
n be represent
blended in the 
as: 
)

),, r  are cylin
d with the fre
defined as: 

)(2sin)(2os  

3

2
2 ()(; xBxC
f



that f(x,) is t
face in a shock
ation of the l

222  kdxkc

ere k represent
, respectively

ncludes nine p
=1,2,3. For an 
f parameters g
o b1 and c1. Th
n the subsonic 
mputed from 
ody geometry.
for the downst

Space Science and 
1/ Spring  2014

equationsaresu

singularity in th
rity is handled
 on the stagna
In the shock-

m of the govern
ed [8] since M

atives of the p
ifferential eq
eneral governin

, the shock sh
The shock sha

ch is presented
subsonic-tran

fore, a marchin
complete shoc
ic region mus
ng procedure 
bsonic-transoni
personic. Gene
face in the su
ed by three lo
circumferentia

ndrical coordin
estream veloc

)cos()() xfC
 

13 (;))( Dffx 

the radial coor
k cylindrical co
ongitudinal co

,1,0  kkxf

ts shock profil
y. The shock 
parameters of 

axisymmetric
governing the 
he global iterat
region involv
the VSL equ

. To insure a
tream marching

 Technology / 4

upplemented b

he standard VS
d by representin
ation line with
oriented system

ning equations 
Maslen's relati

pressure. Thus,
quations whi
ng equations c

hape is generat
ape is calculat
d in Ref. 4. A

nsonic region 
ng scheme is n
ck shape for t
t be determin

is then us
ic region whe
erally, the thre
ubsonic-transon
ongitudinal con
al direction wi

(1

nates. The x ax
ity vector. Al

)() xD
 

(1

2
2) fx   

(1

rdinate of the 3
oordinate system
onic sections 

3,2
 

(1

es for =0, 9
shape defin

bk, ck and 
c flow, the tot
shock surface 
tion of the sho

ves matching t
uations with t
a good startin
g procedure, t

43 

by 

SL 
ng 

h a 
m, 
as 
on 

, a 
ich 
can 

ted 
ted 
As 
is 

not 
the 
ned 
ed 

ere 
ee-
nic 
nic 
ith 

13) 

xis 
lso  

4) 

15)

3D 
m. 
is 

16) 

90 
ned 
dk 
tal 
is 

ck 
the 
the 
ng 
the 



Journal of Space Science and  Technology
Vol. 7/  No. 1/ Spring  2014 44 / 

 
 
 

                            S. Ghasemloo and S. Noori

matching body points are located at the end of the 
subsonic region where the inviscid layer is supersonic. 
Note that in this procedure flowfield is also solved 
behind the shock wave. First, initial values are guessed 
for the above two parameters. The appropriate initial 
shock shape is produced by the values of 0.98 and 1.2 
for b1 and c1. Since the initial shock shape (and the 
resulting jump condition) is known, the governing 
equations can be solved for the entire subsonic region 

to obtain the calculated shock layer thickness, bn , for 

all stations. Next the calculated thickness can be 
determined from the continuity equation: 
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The values for the calculated shock layer 
thickness at the two stations near the end of the 
subsonic region are compared with the values dictated 
by the geometry. Based on the calculated and the 
geometric shock layer thickness, new values of shock 
shape parameters b1 and c1 are computed. With each 
variation of these two parameters, the flowfield is 
solved for the entire subsonic region. This procedure is 

repeated until the calculated values of bn at these two 

stations match the geometric values. Downstream of 
this region, the shock shape is calculated through a 
marching scheme requiring no global iterations. For 
the supersonic region, the shock shape at the current 
station is described by a truncated Taylor's series [5] . 
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Where the shock slope is given by 
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 In these equations, the only unknown is the 

second derivative of sr with respect to sx (which is 

proportional to the shock curvature) at the current 
station. The initial value for this parameter is 
calculated by linear extrapolation of its values at the 
previous two stations. Once the shock geometry and 
the corresponding jump conditions are constrained, the 
governing equations are solved. Then the calculated 
and the geometric values of  nb are compared to 
determine anerror (err ). Through successive 
application of the secant method (accompanied by a 
solution to the fluid equations), err converges to a 
specified tolerance ( 41 10 ). In summary, in the 
subsonic-transonic region, shock shape is specified 
usingan algebraic relation and is corrected through 

global iterations throughout that region. The shock 
shape is computed as part of the solution beyond the 
subsonic-transonic region. Thus, the shock shape is not 
required as an input by the user. 

Method of Solution 
For the solution of governing equations, the shock 
shape should be guessed. In this work, for stagnation 
line, in the subsonic or supersonic regions, the shock 
shape is calculated from the approximate method of 
Riley and DeJarnette. Since the shock shape is known, 
the approximate viscous shock layer equations can be 
solved in the shock layer along a line normal to the 
shock surface. The governing equations are solved 
along the stagnation line and then marched 
downstream and around the body. In each marching 
step the pressure is calculated from Maslen’s relation 
in the shock layer, then the streamwise momentum and 
energy equations (for determining u, h) are solved 
using a fully implicit method in the shock layer. 
Density is calculated from the equation of state. 
Finally the normal component of velocity is 
determined by the solution of continuity equation. 
Since the subsonic-transonic region is elliptic in 
nature, this portion of the flowfield must be solved in a 
global fashion. Aft of the subsonic-transonic region, 
since the inviscid layer is supersonic,a marching 
technique is employed.For this region, the shock shape 
at the current station is extrapolated from the previous 
station.  

The finite-difference representations are 
substituted for the partial derivatives. In this study, for 
an arbitrary point j at station k:  

(20) 
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Where 
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Therefore, the finite differenced equations are 
written again asbelow: 

 (22) jjiijijjij DWCWBWA   1,,1,
 

Where 
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By using these equations, the shock layer 
properties are obtained. 

Results 
The following section demonstratescomparisons of the 
predicted wall heat-transfer distribution with the 
available experimental data [9]. The algorithms 
employed here are fully-implicit. The case examined is 
flow over a 5 deg half-angle spherically blunted cone 
at zero angle of attack. The free stream conditions are 
M∞= 15, T∞=266 k and ρ∞=0.001788 Kg/m3. The wall 
temperature is Tw=1256 k. also, Rnose=0.0381 m. 

Figures 2 and 3 show the heating rate for 
Rnose=0.0381 m. These figures, illustrate the laminar 
flow and Turbulence flow, respectively. Good 
agreement can be observed between the results of 
present method and experimental data. The negligible 
difference between these results is due to using an 
approximate VSL equation. It is believed that Maslen's 
pressure relation is the source of this deviation. Since 
this method is faster than the method of Ref. [10], it is 
appropriate for the preliminary design. In this figure, 
the maximum error of the heating rate respect to the 
experimental data is 6% for laminar flow and 10% for 
turbulence flow. In addition, Figure 4 shows the 
heating rate near the nose and indicates these 
differences clearly. 

 

 

Fig.2 Heatingrate in laminar flow 

 

Fig.3 Heatingrate in turbulence flow 

 

 

Fig.4 Heating rate near the nose 

 

Figure 5 shows the body pressure distribution 
over this case. Grantz in Ref. [3] has explained that the 
agreement between the experimental and calculated 
pressure from Maslen’s relation is excellent. This 
figure shows the error of pressure is negligible (less 
than 5 percent).  

 

Fig.5 Pressure distribution along the body 
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Figure 6 indicates the pressure distribution near the 
nose region. Grantz's method and present method used 
the Maslen's expression for the calculation of pressure. 
The error of this figure is less than 5 percent. 

 

 

Fig. 6 Pressure distribution near the nose 

 
In Figure 7, the shock layer is shown. The 

approximate techniques agree with the VSL results. 
However, inthe close-upgiven in Figure 8, note that the 
two approximate approaches yield a thinner shock 
layer than the VSL algorithm in the overexpansion 
region. 

 
 

 

Fig.7 Shock shape along the body 

 

Fig.8 Shock shape near the nose (overexpansion) 

 

Other figures provide extra information on the 
stagnation region results. In Figure 9, the stagnation 
region pressure profile for all three methods is 
exposed. One can conclude that there is excellent 
agreement between these results; i.e., about three 
percent. The aforementioned error is due to the 
utility of approximate Maslen'ssecond-order pressure 
expression. Density profile comparison results are 
presented in Figure 10.The significant error is not 
shown since this parameter relates the pressure and 
pressure expression which is approximately valid in all 
flowfield. As the result, good agreement for the 
density profile is included in those areas where 
the pressure profile is well-predicted. As it is 
evidentin Figure 11, the normalized tangent 
velocity profile ( su u u ) has a smooth distribution 

in the stagnation region. These results are in close 
agreement with each other, although the VSL 
results are different. This difference may be due to 
the VSL limiting form of the streamwise 
momentum equation. The error of this result is 
roughly two percent in this region. In Figure 12, the 
normal velocity results of the VSL and present 
method are virtually identical, while the results of 
Ref. [11] differ from them slightly. The 
approximate relation for v used in Ref. [11] is the 
source of this difference. Figure 13 shows that the 
enthalpy profile of the three methods is virtually 
identical on the stagnation line. It is dictated by 
Energy equation solving. The error of this profile is 
about 2 percent. 
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Fig.9 Pressure profile comparison in stagnation  region 

 

 

Fig.10 Density profile comparison in stagnation region 

 

 

Fig. 11 Tangent velocity  profile comparison in stagnation 
region 

 

Fig. 12 Normal velocityprofile comparison in stagnation  
region 

 

 

Fig. 13 Enthalpy profile comparison in stagnation  region 

 

Conclusion 
In this investigation, a method is developed to solve 
hypersonic flowfield about axisymmetric blunt bodies. 
This method, when compared to VSL solutions, is 
provedto be smooth and accurate for perfect gases. 
Moreover, governing equations are solved in a shock-
oriented coordinate system. Usingthe present method the 
surface heating rates and flowfield properties can 
bepredicted faster in comparison with the other methods. 
Since the subsonic region is only a small portion of the 
flow field for hypersonic flows over slender bodies, and 
the global iteration is confined tothis region only in the 
present method, a significant reduction in CPU time is 
achieved. Moreover, by using the shock coordinated 
systems, the junction point problem in sphere-cone 
configurations is solved. Results of the present method 
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compare quite favorably with experimental data and other 
predictions.  Furthermore, these calculations have 
excellent agreement between the VSL and the 
approximate approaches and this event is seen in the nose 
region specially. This method calculates their stagnation 
values more smoothly than the VSL solution and some 
approximate approaches. 
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