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Tracking guidance commands for a time-varying aerospace launch vehicle during the
atmospheric flight is considered in this paper. Hence, the dynamic terminal sliding mode
control law is constructed for this purpose and dynamic sliding mode control is utilized.
The terminal sliding manifold causes the dynamic sliding mode to converge
asymptotically to zero in finite-time. The actuator and rate gyro dynamics are included in
the model of launch vehicle. Dynamic sliding mode control accommodates unmatched
disturbances, while the terminal sliding mode control is used to accelerate the system to
reach the dynamic sliding manifold. Finally, the effectiveness of the proposed control is
demonstrated in the presence of unmatched disturbances and is compared with the
dynamic sliding mode.

Keywords: Terminal sliding mode, Dynamic sliding mode, Unmatched disturbance, Finite-time

convergence

Nomenclature

tracking error

Initial height

DSM surface

pitch rate

sliding mode surface

thrust due to control engines
speed of launch vehicle
Lyapunov function

velocity in x direction
velocity in z direction

air density, positive constant
width of boundary layer
gravitational parameter

ox mo &< <cRBwua aso

pitch angle

I ntroduction

The main purpose of the flight control systems or
autopilots in an Aerospace Launch Vehicle (ALV) is
to maintain the vehicle attitude commanded by the
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guidance section. The autopilot determines the ALV
attitude via an inertial measurement unit (IMU) and
commands the appropriate change in the engine thrust
vector to achieve the commanded attitude. Design of
the launch vehicle autopilot must satisfy three main,
often conflicting requirements: stabilizing the vehicle,
ensuring adequate responses to guidance commands
while minimizing trajectory deviation, and minimizing
angle of attack in the region of high dynamic pressure
to ensure the structural integrity of the vehicle [1].
Flight control of aeronautical and space vehicles
involves attitude maneuvering through a wide range of
flight conditions, wind disturbances, and plant
uncertainties, including aerodynamic surfaces and
engine failures. Application of differential geometric
methods to the system state-flow analysis and
feedback synthesis has led to the development of many
powerful control design methods for flight control
systems. Such a controller would drastically decrease
the amount of time spent in the pre-flight analysis, and
at the same time improve flight vehicle reliability and
robustness in the face of failure and damages. Sliding
mode control (SMC) methods have already found their
places in the arsenal of control design tools for
aeronautical and space vehicles [2]. The sliding mode
control has been studied for many decades and it is
now one of the most active areas of research on
nonlinear system theory. The sliding mode control is
characterized by the choice of a sliding surface
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describing the desired performance and by the
determination of a control law in a way that drives the
system states to reach and remain on this surface. An
asymptotic convergence to the final state will be
achieved in the sliding mode [3].

Dynamic sliding mode (DSM) is used by many
authors and in some of the works it has been combined
with other sliding mode methods such as terminal
sliding mode ([2, 4-7]). Feng et al. employ terminal
sliding mode and conventional sliding mode to
construct second-order sliding mode for a class of
uncertain input-delay systems. A linear sliding mode
manifold is predesigned to represent the ideal
dynamics of the system. Another terminal sliding
mode manifold surface is presented to derive the linear
sliding mode to reach zero in finite-time [8].

In sliding mode, the purpose of control is
reaching the manifold in finite-time and remaining on
this surface for all of the time. Terminal sliding mode
is used to accelerate the system to reach the linear
sliding mode so as to increase the response rate of
system ([8, 10]).

In this paper, a new sliding mode by using two
sliding mode methods is presented. Dynamic sliding
mode for a lunch vehicle, which has non-minimum
phase and time-variable model, is designed. Another
terminal sliding manifold is presented in order to
converge the dynamic sliding surface to zero in
finite-time. Saturation function is used to eliminate
or reduce chattering, but in the saturation function
employed here a new sliding surface is presented
inside the control structure. The combination of the
saturation function with this terminal dynamic
sliding surface is in a way that the variation of the
Lyapunov function is hastened in the proximity of
zero. The saturation function, which considers the
terminal sliding mode surface as its variable, forces
Lyapunov function derivative to hasten when
reaching the approximation of zero; it causes
control law to have more potent asymptotically
stability for the equilibrium point in the presence of
disturbances and parameter uncertainties. This
difference in the dynamic sliding surface exists
because of the use of terminal nonlinear manifold to
converge the tracking error to zero in finite-time.

The paper is organized as follows: in section II
the model formulation is presented. In section III
sliding mode concepts are explained. Terminal
sliding mode and dynamic sliding mode control
theory are separately presented in section III. In the
other words, this section explains the theoretical
base of control design. In section IV, after the
choice of sliding surface, the control structure is
determined. Section V illustrates simulation and
results for the proposed control in comparison with
dynamic sliding mode, and finally concluding
remarks are given in section VI.
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Modd Formulation

For describing the dynamics of the model, obtaining
equation of motion for the launch vehicle is necessary.
The equation of motion for the launch vehicle can be
derived from Newton’s second law of motion, which
states that the summation of all external forces acting on a
body must be equal to the time rate of change of its
momentum and the summation of the external moments
must be equal to the time rate of change of its moment of
momentum (angular momentum). The time rates of
change are all taken with respect to inertial space [10].
These laws can be expressed as follows:
F,=m. (VX + q.VZ)
F,=m. (vz_q-vx) (D

My =1,.q

This equation is simplified to 3-degree-of-
freedom equations. Because the goal is longitudinal
control, planar equations are used. By substituting
aerodynamic, gravitational and control forces in the
above equations, the 3DOF equation of motion is
simplified as follows:

Fy
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Where Fy is the resultant of all longitudinal
forceses thrust, control thrust vectors (that
decomposed in total longitudinal) and aerodynamic
drag. x,. is the static margin and J. is the angle of
control engines deflection. Above equations are used
for the simulation of the model.

The control design for a lunch vehicle by some
linearization is due to the strength of sliding mode
controller that lies in its ability to handle nonlinearities
in the control dynamics [11]. The model from which it
can be exploited for control is as follows:

usin® )
(f usind+hg)? 0+ Zs,e

q = MVZVZ + qu + M@ese
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In the above equations, being purposed for
control, Z and M indicate the acrodynamics and force
coefficients for ALV that vary with time, and p is the
gravitational parameter (i.e. u=GM). The J. shows the
deflection of control thrusters that are used as control
actuators for supply control commands.

The servomechanism’s and Rate gyro’s Transfer
functions are shown in (6), (7) as follows:

1
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The rate gyro is implemented for measuring the
pitch rate of ALV and feedbacking data to the controller
to be compared with the reference pitch rate and to
calculate the tracking error.

Terminal and Dynamic Sliding Mode
Control

In this section fundamentals of conventional and
terminal sliding mode are expressed. Then terminal
sliding mode is used to introduce a new saturation
function that is utilized to implement the terminal
dynamic sliding mode control. Finally, the dynamic
sliding theory is presented.

Sliding M ode Control Theory

The tracking error is defined ase =X —X; in the
variable X, which must track the desired trajectory.
The time-variable surface S(t) in the state-space by the
scalar equation s(x, t) = 0 is defined as:

s =(4+2) e ®)

In the other words, S is simply a weighted sum of
the position error and the velocity error. The A
coefficient is a strictly positive constant. More
precisely, the problem of tracking the n-dimensional
vector can be replaced by a 1%-order stabilization
problem in s [12].

The simplified 1¥-order stabilization problem can
be satisfied by sufficiently choosing the control law so
that outside of S (t) [12] we have:

So-s2 < —ls| ©)

Where n in the sliding condition is a positive
constant. This equation implies that the squared distance
to the surface, as measured by S* decreases along all
system trajectories. Satisfying (9) makes the surfaces an
invariant set [12].

Lyapunov direct method can also be used to
obtain the control law. A candidate function is selected as:

V= issT (10)

That must guarantee the Lyapunov conditions that
equal the sliding condition expressed in (9) and make
the surface invariant set. The condition guaranteeing
an ideal sliding motion is the sliding condition [13].
Therefore, a control input can be chosen so that
V(s) <0 for all time for every nonzero S. Indeed,
feedback linearization is used for the first term of input
to make S derivative zero and the second term is
designed in a way that V(s) <0 is satisfied. These
conditions cause the asymptotical convergence to the
surface (s=0). Thus, the input can be determined in a
way that the last condition is satisfied.
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In the first step, the continuous part is designed so
that the derivation of s becomes zero (for reaching the
surface). In the second step, discontinuous part is
designed to retain variables in manifold and slide on this
for all times. To this end, a sign function is considered.
However, because of the discontinuity across the sliding
surfaces, the preceding control law may result in control
chattering. Chattering is an undesirable phenomenon,
since it involves high frequency action and may excite
high-frequency dynamics neglected in the modeling. The
discontinuity in the control law can be dealt with by
defining a thin layer of € width around the sliding surface
[14]. Hence, we use a saturation function that lets
variables not be exactly in the surface but be in the
boundary layer about S=0. In this way, the chattering is
eliminated and system has adequate time for switching.

Choosing the boundary layer thickness is a tradeoff
between precision and chattering. Greater thickness
results in low chattering and less precision. Due to this
choice, the effect of noise is degraded. Therefore,
designer must choose a sufficient € in saturation function
by knowing about noises and uncertainty in plant.

Terminal Sliding Mode Control and its Use in
Saturation Function:

Recently, the terminal sliding mode control has been
developed to achieve the finite-time convergence of
the system dynamics in the terminal sliding mode.
Instead of using hyper planes as the sliding surfaces,
this method adopts nonlinear sliding surfaces [15]. The
terminal sliding mode design is based on a particular
choice of the sliding surface and good determination of
a control law permitting to derive the system states
that remain on this surface. When the representative
point of the system movement slides on the surface, a
terminal sliding mode is established and a fast finite
convergence is guaranteed. To reach this goal, one
defines a nonlinear sliding surface:
a
S =x, + pxf (11)

Where >0, p and q are positive odd integers
verifying q>p [3], and 1<q/p<2 [16]. Equation (11)
satisfies Lyapunov conditions for Lyapunov function
(10) when:

. . ﬂ_l
v=ss=s<5c2+[3§x‘; 5<1>50 (12)

That for asymptotical stability, except equilibrium
point, Lyapunov function must be negative (i.e., just
when states are zero, this function can be zero). The
fast response in this method can be found in its
difference with conventional sliding mode. The sliding
manifold is nonlinear by adding power. In the vicinity
of zero point (equilibrium point) rate of error
elimination is more than conventional sliding mode,
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a
a4
because of the existence of %xf in the sliding

manifold derivative as seen in (12).

In both second-order and terminal sliding mode
for satisfying the last Lyapunov condition (if we use
saturation function) the following term should finally
be obtained:

V = —pSsat (E) <0 (13)
p is a positive constant. Terminal sliding mode idea led

us to a new approach in the second part of input that
appeared in (13).
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Fig. 1. Sat(s) ---- in comparison with sat(S"0.64)

If instead of using S in saturation function, S to
power of p/g-1 is used, boundary layer thickness (i.e.
€) is not changed but like the terminal sliding mode in
the vicinity of zero the saturation function becomes
greater than before. This causes more negative
Lyapunov function. This concept can be seen in
figurel.This means that control is more robust against
disturbances and uncertainties. Furthermore, the finite-
time convergence and asymptotical stability is more
guaranteed.

Dynamic Sliding Mode Theory

Non-minimum phase nature of a plant restricts the
application of the powerful nonlinear control
techniques such as sliding mode control. Accordingly,
the existence condition of conventional sliding modes
cannot be completely met for a bounded control and
the system experiences instability due to unstable
internal dynamics. As a remedy to this problem, a
dynamic sliding-mode controller was proposed that
could be applied to non-minimum phase output
tracking [7].

The main characteristic of the dynamic sliding
mode is being a compensator [13]. In order to reduce
the effect of the unmatched disturbance to the output
steady-state tracking error, the dynamic sliding
manifold was designed as a linear dynamic operator
acting on some states and on tracking errors as
follows[17]:

3(xz,e) = x, + W(s)e (14)
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_4 O}
Where s = e W(s) = o) and P(s), Q(s) are
polynomials of s. A candidate for the Lyapunov

function [13]:
V=05)TI>0 (15)

Is built, and its derivative must satisfy the Lyapunov
condition.

In the next section we combine the dynamic and
terminal sliding to construct a new control law and
finally we use this control law to make controller more
robust and with higher tracking capability.

Control Design

In this section, the control structure is designed by
using the previous section information. The purpose of
designing the control structure is tracking the pitch
program command that is pre-programmed for
atmosphere flight as shown in Figure 2.

For designing the sliding manifold, dynamic
terminal sliding surface is considered. Since the goal is
to track non-minimum phase system in the presence of
unmatched disturbance, the dynamic sliding manifold
is chosen as following:

I=6+W(s)6, (16)

That 6. =0.-0 is tracking error for pitch angle and
the compensator of dynamic surface is as follows:

s2+280s+2880
Zizos (17)
s<+25.8s

The above compensator has a positive steady
state error. We considered (15) as Lyapunov function
and for satisfying Lyapunov condition for asymptotic
stability, the following equation must be satisfied:

W(s) =

V=33<0 (18)

Input for thruster deflection command will be
obtained as follows like what is proposed in [13]:

8. = —psat (3) (19)

In [13], this control is achieved by considering
the integral of time multiplied by absolute tracking
error criterion for dynamic sliding design.

Terminal sliding mode idea is used for this
dynamic sliding manifold and is compared with
dynamic sliding mode without terminal sliding mode.
The dynamic sliding manifold is used as sliding
variables that must converge to zero in finite-time. The
terminal nonlinear manifold is assumed as:

S=68%72+W(s)f27" (20)

In (20), the power is according to what proposed
in section III and with ¢/p magnitude that satisfies the
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mentioned condition for terminal sliding mode. Thus
input command is as follow:

5. = —psat ) @1)

In this command, the terminal sliding mode idea
in saturation function can be seen, because in the

sliding surface g — 1 power is considered as 0.72.

In the next section, these two sliding mode
control laws are compared in simulation.
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Fig. 2. The desired profile for ALV

Simulation Results

A simulation is performed to illustrate the validity and
performance of the proposed control for tracking the
desired trajectory of ALV. The model of this paper is
like [1, 11]. The coefficients of (5) are depicted in
Figure 3 with respect to time from [1, 11].

Remark: the gravity term in longitudinal axes of
ALV is shown as Z-0 for illustrating ALV coefficient
variation, but is computed online while other
coefficients are considered offline.

In order to show the robustness and accuracy of
the constructed control, the unmatched disturbance
depicted in Figure 4is exerted. Simulation results in
comparison with dynamic sliding mode designed in
the previous section are shown. Hence, the dynamic
sliding manifold is as (16) for both controls. But in the
proposed control this manifold is used for terminal
nonlinear sliding manifold.

The tracking error is depicted for both dynamic
and proposed dynamic terminal sliding control in Figure 5
and Figure 6. For simulation purpose, p = 8.8,& = 1.25 is
considered ¢.
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Fig. 4. Unmatched disturbances profiles (a) exerted on pitch
equation, and (b) exerted on vertical velocity equation

As shown in Figure 5 and Figure 6 the error in the
proposed control is a lot lower than the dynamic
sliding mode control. The proposed dynamic terminal
sliding mode has better results and can adapted with
the exerted unmatched disturbances. The proposed
control has a fast response and a more precise tracking.
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For higher resolution of the performance of
proposed control and its behavior, results are shown
separately in Figure 7 and Figure 8. It is done as the
scale of error in the second-order sliding mode is less
than the ordinary sliding mode. Figure 9 shows the
control effort or the control thrusters deflections in time.
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Conclusion

In this paper, a novel sliding mode approach to achieve
the asymptotic stability and disturbance rejection for
tracking guidance commands profile in the presence of
unmatched disturbances is introduced. The innovative
idea of this paper is focused on more robustness and
asymptotic stability by choosing terminal nonlinear
sliding manifold for converging the sliding variables in
the dynamic sliding surface to zero. This idea can be
seen in the saturation function that is given for thruster
commands. The simulation results show the
effectiveness and improvement in the performance of
the proposed control in comparison with the
introduced dynamic sliding mode control for ALV.
This control can reject the effects of exerted
unmatched disturbances which may have been caused
by atmosphere condition or gusts. Furthermore, this
control has adequate robustness and efficient
performance.
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