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Tracking guidance commands for a time-varying aerospace launch vehicle during the 
atmospheric flight is considered in this paper. Hence, the dynamic terminal sliding mode 
control law is constructed for this purpose and dynamic sliding mode control is utilized. 
The terminal sliding manifold causes the dynamic sliding mode to converge 
asymptotically to zero in finite-time. The actuator and rate gyro dynamics are included in 
the model of launch vehicle. Dynamic sliding mode control accommodates unmatched 
disturbances, while the terminal sliding mode control is used to accelerate the system to 
reach the dynamic sliding manifold. Finally, the effectiveness of the proposed control is 
demonstrated in the presence of unmatched disturbances and is compared with the 
dynamic sliding mode. 
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Nomenclature12 

e tracking error 

h0 Initial height ণ DSM surface 

q pitch rate 
S sliding mode surface 

TC thrust due to control engines 
U speed of launch vehicle 
V Lyapunov function 
Vx velocity in x direction 

Vz velocity in z direction ߩ air density, positive constant ߝ width of boundary layer ߤ gravitational parameter ߠ pitch angle 

Introduction 

The main purpose of the flight control systems or 
autopilots in an Aerospace Launch Vehicle (ALV) is 
to maintain the vehicle attitude commanded by the 
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guidance section. The autopilot determines the ALV 
attitude via an inertial measurement unit (IMU) and 
commands the appropriate change in the engine thrust 
vector to achieve the commanded attitude. Design of 
the launch vehicle autopilot must satisfy three main, 
often conflicting requirements: stabilizing the vehicle, 
ensuring adequate responses to guidance commands 
while minimizing trajectory deviation, and minimizing 
angle of attack in the region of high dynamic pressure 
to ensure the structural integrity of the vehicle [1].     

Flight control of aeronautical and space vehicles 
involves attitude maneuvering through a wide range of 
flight conditions, wind disturbances, and plant 
uncertainties, including aerodynamic surfaces and 
engine failures. Application of differential geometric 
methods to the system state-flow analysis and 
feedback synthesis has led to the development of many 
powerful control design methods for flight control 
systems. Such a controller would drastically decrease 
the amount of time spent in the pre-flight analysis, and 
at the same time improve flight vehicle reliability and 
robustness in the face of failure and damages. Sliding 
mode control (SMC) methods have already found their 
places in the arsenal of control design tools for 
aeronautical and space vehicles [2]. The sliding mode 
control has been studied for many decades and it is 
now one of the most active areas of research on 
nonlinear system theory. The sliding mode control is 
characterized by the choice of a sliding surface 
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describing the desired performance and by the 
determination of a control law in a way that drives the 
system states to reach and remain on this surface. An 
asymptotic convergence to the final state will be 
achieved in the sliding mode [3]. 

 Dynamic sliding mode (DSM) is used by many 
authors and in some of the works it has been combined 
with other sliding mode methods such as terminal 
sliding mode ([2, 4-7]). Feng et al. employ terminal 
sliding mode and conventional sliding mode to 
construct second-order sliding mode for a class of 
uncertain input-delay systems. A linear sliding mode 
manifold is predesigned to represent the ideal 
dynamics of the system. Another terminal sliding 
mode manifold surface is presented to derive the linear 
sliding mode to reach zero in finite-time [8].  

In sliding mode, the purpose of control is 
reaching the manifold in finite-time and remaining on 
this surface for all of the time. Terminal sliding mode 
is used to accelerate the system to reach the linear 
sliding mode so as to increase the response rate of 
system ([8, 10]).  

In this paper, a new sliding mode by using two 
sliding mode methods is presented. Dynamic sliding 
mode for a lunch vehicle, which has non-minimum 
phase and time-variable model, is designed. Another 
terminal sliding manifold is presented in order to 
converge the dynamic sliding surface to zero in 
finite-time. Saturation function is used to eliminate 
or reduce chattering, but in the saturation function 
employed here a new sliding surface is presented 
inside the control structure. The combination of the 
saturation function with this terminal dynamic 
sliding surface is in a way that the variation of the 
Lyapunov function is hastened in the proximity of 
zero. The saturation function, which considers the 
terminal sliding mode surface as its variable, forces 
Lyapunov function derivative to hasten when 
reaching the approximation of zero; it causes 
control law to have more potent asymptotically 
stability for the equilibrium point in the presence of 
disturbances and parameter uncertainties. This 
difference in the dynamic sliding surface exists 
because of the use of terminal nonlinear manifold to 
converge the tracking error to zero in finite-time. 

The paper is organized as follows: in section II 
the model formulation is presented. In section III 
sliding mode concepts are explained. Terminal 
sliding mode and dynamic sliding mode control 
theory are separately presented in section III. In the 
other words, this section explains the theoretical 
base of control design. In section IV, after the 
choice of sliding surface, the control structure is 
determined. Section V illustrates simulation and 
results for the proposed control in comparison with 
dynamic sliding mode, and finally concluding 
remarks are given in section VI. 

Model Formulation 

For describing the dynamics of the model, obtaining 
equation of motion for the launch vehicle is necessary. 
The equation of motion for the launch vehicle can be 
derived from Newton’s second law of motion, which 
states that the summation of all external forces acting on a 
body must be equal to the time rate of change of its 
momentum and the summation of the external moments 
must be equal to the time rate of change of its moment of 
momentum (angular momentum). The time rates of 
change are all taken with respect to inertial space [10]. 
These laws can be expressed as follows: ܨ୶ = m. ൫Vሶ୶ + q. V୸൯ܨ୸ = m. ൫Vሶ୸ − q. V୶൯M୷ = I୷. qሶ                             (1) 

This equation is simplified to 3-degree-of-
freedom equations. Because the goal is longitudinal 
control, planar equations are used. By substituting 
aerodynamic, gravitational and control forces in the 
above equations, the 3DOF equation of motion is 
simplified as follows: ሶܸ௫ = ிೣ௠ − .ݍ ௭ܸ                                                      (2) ሶܸ௭ = ൬ 12݉ ௭ఈ൰ܥܷܵߩ ௭ܸ + ൬ 14݉ ௭௤ܥܦܷܵߩ + ܷ൰ ݍ − )− ߠݏ݋ܿ݃ ଶ௠ .                        (௘ߜ) ݊݅ݏ(ܥܶ

ሶݍ (3) = ൬ ଵଶூ೤ ௭ఈ൰ܥ௔௖ݔܷܵߩ ௭ܸ + ൬ ଵସூ೤ ௠௤൰ܥଶܦܷܵߩ ݍ − ( ଶூ೤ . .ܥܶ  (4)      (௘ߜ) ݊݅ݏ(ݔ݀

 
Where Fx is the resultant of all longitudinal 

forceses thrust, control thrust vectors (that 
decomposed in total longitudinal) and aerodynamic 
drag. xac is the static margin and δe is the angle of 
control engines deflection. Above equations are used 
for the simulation of the model. 

The control design for a lunch vehicle by some 
linearization is due to the strength of sliding mode 
controller that lies in its ability to handle nonlinearities 
in the control dynamics [11]. The model from which it 
can be exploited for control is as follows: vሶ ୸ = Z୴v୸ + Z୯q − μୱ୧୬θ(׬ ୳ୱ୧୬θା୦బ)మ θ + Zδ౛δୣqሶ = M୚୞v୸ + M୯q + Mδ౛δୣ             (5) 

In the above equations, being purposed for 
control, Z and M indicate the aerodynamics and force 
coefficients for ALV that vary with time, and μ is the 
gravitational parameter (i.e. μ=GM). The δe shows the 
deflection of control thrusters that are used as control 
actuators for supply control commands.  

The servomechanism’s and Rate gyro’s Transfer 
functions are shown in (6), (7) as follows:  

 ሾܶܨሿୱୣ୰୴୭ = δ

δౙ = ଵ଴.ଵୱାଵ               (6) ሾܶܨሿ୥୷୰୭ = (଼଴π)మୱమା(ସ଴π)ୱା(଼଴π)మ                                   (7) 
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The rate gyro is implemented for measuring the 
pitch rate of ALV and feedbacking data to the controller 
to be compared with the reference pitch rate and to 
calculate the tracking error. 

Terminal and Dynamic Sliding Mode 
Control 

In this section fundamentals of conventional and 
terminal sliding mode are expressed. Then terminal 
sliding mode is used to introduce a new saturation 
function that is utilized to implement the terminal 
dynamic sliding mode control. Finally, the dynamic 
sliding theory is presented.   

Sliding Mode Control Theory 

The tracking error is defined as݁ = ܺ − ܺௗ in the 
variable X, which must track the desired trajectory. 
The time-variable surface S(t) in the state-space by the 
scalar equation s(x, t) = 0 is defined as: 

ܵ(ܺ, (ݐ = ቀ ௗௗ௧ + ቁ௡ିଵߣ ݁              (8) 

In the other words, S is simply a weighted sum of 
the position error and the velocity error. The λ 
coefficient is a strictly positive constant. More 
precisely, the problem of tracking the n-dimensional 
vector can be replaced by a 1st-order stabilization 
problem in s [12]. 

The simplified 1st-order stabilization problem can 
be satisfied by sufficiently choosing the control law so 
that outside of S (t) [12] we have: ଵଶ ௗௗ௧ ܵଶ ≤  (9)               |ܵ|ߟ−

Where η in the sliding condition is a positive 
constant. This equation implies that the squared distance 
to the surface, as measured by S2, decreases along all 
system trajectories. Satisfying (9) makes the surfaces an 
invariant set [12]. 

Lyapunov direct method can also be used to 
obtain the control law. A candidate function is selected as: 

 ܸ = ଵଶ  (10)               ்ݏݏ

That must guarantee the Lyapunov conditions that 
equal the sliding condition expressed in (9) and make 
the surface invariant set. The condition guaranteeing 
an ideal sliding motion is the sliding condition [13]. 
Therefore, a control input can be chosen so that ሶܸ (ݏ) < 0 for all time for every nonzero S. Indeed, 
feedback linearization is used for the first term of input 
to make S derivative zero and the second term is 
designed in a way that ሶܸ (ݏ) < 0 is satisfied. These 
conditions cause the asymptotical convergence to the 
surface (s=0). Thus, the input can be determined in a 
way that the last condition is satisfied.  

In the first step, the continuous part is designed so 
that the derivation of s becomes zero (for reaching the 
surface). In the second step, discontinuous part is 
designed to retain variables in manifold and slide on this 
for all times. To this end, a sign function is considered. 
However, because of the discontinuity across the sliding 
surfaces, the preceding control law may result in control 
chattering.  Chattering is an undesirable phenomenon, 
since it involves high frequency action and may excite 
high-frequency dynamics neglected in the modeling. The 
discontinuity in the control law can be dealt with by 
defining a thin layer of ε width around the sliding surface 
[14]. Hence, we use a saturation function that lets 
variables not be exactly in the surface but be in the 
boundary layer about S=0. In this way, the chattering is 
eliminated and system has adequate time for switching.  

Choosing the boundary layer thickness is a tradeoff 
between precision and chattering. Greater thickness 
results in low chattering and less precision. Due to this 
choice, the effect of noise is degraded. Therefore, 
designer must choose a sufficient ε in saturation function 
by knowing about noises and uncertainty in plant. 

Terminal Sliding Mode Control and its Use in 
Saturation Function: 

Recently, the terminal sliding mode control has been 
developed to achieve the finite-time convergence of 
the system dynamics in the terminal sliding mode. 
Instead of using hyper planes as the sliding surfaces, 
this method adopts nonlinear sliding surfaces [15]. The 
terminal sliding mode design is based on a particular 
choice of the sliding surface and good determination of 
a control law permitting to derive the system states 
that remain on this surface. When the representative 
point of the system movement slides on the surface, a 
terminal sliding mode is established and a fast finite 
convergence is guaranteed. To reach this goal, one 
defines a nonlinear sliding surface: ܵ = ଶݔ +  ଵ೜೛             (11)ݔߚ

 Where β>0, p and q are positive odd integers 
verifying q>p [3], and 1<q/p<2 [16]. Equation (11) 
satisfies Lyapunov conditions for Lyapunov function 
(10) when: Vሶ = SSሶ = S ቆݔሶ 2 + β

qp x1qp−1xሶ1ቇ ≤ 0                        (12) 

That for asymptotical stability, except equilibrium 
point, Lyapunov function must be negative (i.e., just 
when states are zero, this function can be zero). The 
fast response in this method can be found in its 
difference with conventional sliding mode. The sliding 
manifold is nonlinear by adding power. In the vicinity 
of zero point (equilibrium point) rate of error 
elimination is more than conventional sliding mode, 
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mentioned condition for terminal sliding mode. Thus 
input command is as follow: ߜୡ = −ρsat ቀୗ

ε
ቁ                                      (21) 

In this command, the terminal sliding mode idea 
in saturation function can be seen, because in the 
sliding surface 

௤௣ − 1 power is considered as 0.72.  

In the next section, these two sliding mode 
control laws are compared in simulation. 

 

 
 

 
Fig. 2. The desired profile for ALV 

Simulation Results 

A simulation is performed to illustrate the validity and 
performance of the proposed control for tracking the 
desired trajectory of ALV. The model of this paper is 
like [1, 11]. The coefficients of (5) are depicted in 
Figure 3 with respect to time from [1, 11]. 

Remark: the gravity term in longitudinal axes of 
ALV is shown as Z-θ for illustrating ALV coefficient 
variation, but is computed online while other 
coefficients are considered offline. 

In order to show the robustness and accuracy of 
the constructed control, the unmatched disturbance 
depicted in Figure 4is exerted. Simulation results in 
comparison with dynamic sliding mode designed in 
the previous section are shown. Hence, the dynamic 
sliding manifold is as (16) for both controls. But in the 
proposed control this manifold is used for terminal 
nonlinear sliding manifold. 

The tracking error is depicted for both dynamic 
and proposed dynamic terminal sliding control in Figure 5 
and Figure 6. For simulation purpose,  ρ = 8.8, ߝ = 1.25 is 
considered ߝ. 

 

 
Fig. 3. Longitudinal dynamics coefficients for ALV 

 

 
(a) 

 
(b) 

Fig. 4. Unmatched disturbances profiles (a) exerted on pitch 
equation, and (b) exerted on vertical velocity equation 

 

As shown in Figure 5 and Figure 6 the error in the 
proposed control is a lot lower than the dynamic 
sliding mode control. The proposed dynamic terminal 
sliding mode has better results and can adapted with 
the exerted unmatched disturbances. The proposed 
control has a fast response and a more precise tracking.  
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