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An accurate and efficient computational procedure is developed to predict the 
laminar hypersonic flowfield for both the perfect gas and equilibrium air around the 
axisymmetric blunt body configurations. To produce this procedure, the boundary layer 
equations utilize the integral matrix solution algorithm for the blunt nose and after body 
region by using a space marching technique. The integral matrix procedure enables us to 
create accurate and smooth results using the minimum grid in the boundary layer and to 
minimize the computational costs. This algorithm is highly appropriate for the design of 
hypersonic reentry vehicles. The effects of real gas on the flowfield characteristics are 
also studied in boundary layer solutions. Comparisons of the results with experimental 
data demonstrate that accurate solutions are obtained. 
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௘ݑ Velocity magnitude on the edge of boundary layer Re∞  Free stream Reynolds number T∞ Free stream static temperature J୑ୟ୶  Maximum grid points  Q∞  Free stream heat flux =h∞ߩ∞V∞   

Introduction 

Hypersonic flows are very important for the design of 
high speed aircraft and reentry vehicles and some 
aerodynamic problems must be considered in this regard. 
Most of these problems arise because of extremely high 
flight altitudes, high flight velocities and high 
temperatures. The high temperatures and high convective 
velocities create an environment with significant effects 
of real gas. The accurate and efficient design of thermal 
protection systems, as well as propulsion systems for 
such vehicles will require accurate information of various 
aerothermodynamics environments. Since the 
aerothermodynamics environment for these flight 
conditions (high speeds and high temperatures) is 
extremely difficult to simulate in ground-based or flight 
experiments, the design process for these vehicles will be 
heavily based on the computational methods to define the 
aerothermodynamics environment during reentry.  
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Several common computational approaches for 
obtaining accurate aerothermodynamics predictions of 
these vehicles are the Thin-Layer Navier-Stokes 
(TLNS) equations, the Parabolized Navier-Stokes 
(PNS) equations, the viscous shock layer (VSL) 
equations and the boundary layer equations. The 
numerical computations of hypersonic viscous flows 
using the TLNS equations especially for long slender 
blunt bodies are very time consuming and require very 
high storage and computer speed. Therefore, they are 
not well suited for various parametric studies needed 
for design and analysis processes. 

Two approaches for the computation of high 
speed flows over slender-body supersonic/hypersonic 
geometries are the PNS or VSL equations. These 
equations are parabolic-like with respect to the stream-
wise direction. The main difficulty in applying the 
PNS approach over blunt-body configurations is 
weakness of the PNS equations to solve the subsonic 
flowfield in the blunted nose, and therefore the TLNS 
equations must be used. The VSL equations are a more 
approximate set of equations than the PNS equations. 
In terms of complexity, they represent an intermediate 
level of approximation between the PNS equations and 
the boundary-layer equations. The VSL equations are 
also hyperbolic-parabolic in the stream wise direction 
so that a solution may be advanced downstream by 
using a spatial marching technique. Note that the 
solution of both the PNS and VSL schemes avoids the 
requirement to determine the second-order boundary-
layer effects of vorticity and displacement thickness, 
and also matching the in viscid and viscous regions, 
required for the solution of the boundary-layer 
equations. The major drawback in use of the VSL 
equations for calculating hypersonic flows over blunt 
bodies is that they need starting solutions and an 
appropriate initial shock shape and also smoothing of 
intermediate shock shapes for the solution to be 
converged. In general, the VSL approaches are more 
sensitive to these values, and in the design 
environment such requirements of the user are 
undesirable. 

A common alternative computational approach 
for obtaining accurate aerothermodynamics predictions 
of these vehicles is to use the equilibrium boundary 
layer (BL) equations. The BL equations are also 
parabolic-like with respect to the stream-wise 
direction; hence the BL scheme can realize appreciable 
decreases in both computational time and memory 
requirements relative to the other schemes like TLNS 
approximation method [1]. Based on this procedure a 
known code entitled “BLIMP” (Boundary Layer 
Implicit Method Procedure) developed in NASA [2].  

Several researchers used a dual-code solution 
procedure (TLNS-PNS) or VSL to decrease the 
computational cost and develop an efficient 
procedure to predict the flowfield around 
hypersonic vehicles [3-8]. A TLNS solver is used in 

the nose region and a PNS solver for the after body 
region. 

Such a solution strategy for computation of 
hypersonic flowfields over blunt-body geometries 
using two well-established TLNS and PNS codes, 
LAURA [9] and UPS [10]. These two codes were 
based on finite volume and shock capturing 
algorithms. The application of the dual-code solution 
procedure was shown for the solution of perfect gas, 
chemical equilibrium and chemical no equilibrium 
hypersonic flows about slender blunted cones. 
Esfahanian et al. [11] used a combined TLNS-PNS 
solution procedure for the blunt cone case. 

The boundary layer equations have been used to 
efficiently solve the flowfield between the blunt bodies 
and in viscid region by some researcher using different 
algorithms [12, 13]. 

As mentioned before, high temperatures of air 
around the hypersonic vehicles create an environment 
where the real gas effects can be significant. This causes 
some errors in the numerical results when the perfect gas 
assumption is applied. Therefore, considering the real gas 
effects in high temperature flowfields seems necessary to 
create accurate results. Kamali [14] investigates the 
effects of equilibrium air for laminar and turbulent 
flow over the blunt bodies. 

The main objective of the present work is to 
accurately and efficiently compute hypersonic laminar 
flows including equilibrium gas effects over reentry 
axisymmetric bodies. The numerical algorithms based on 
the integral matrix procedure with Taylor's series using 
the Newoton-Raphson's linearization can provide 
accurate and smooth solutions for geometries with small 
axial geometric variation. This procedure enables us to 
create accurate results using the minimum grid in the 
boundary layer and to minimize the computational costs. 
The effects of real gas on the flowfield characteristics are 
also studied in boundary layer solutions.  

To demonstrate the accuracy and efficiency of 
using the present algorithm, two computations are 
performed for hypersonic flows over blunt-bodies. The 
present computations are performed for hypersonic 
flow over two long slender blunt cones at Mach 
number of 19.25 and 6.89 and over a sphere at Mach 
number of 11.26. The results of these computations are 
compared with available numerical and experimental 
results. For the above calculations, the perfect gas 
solutions are also performed and some details on the 
treatment of real gas effects on the flowfield 
characteristics are provided. 

Problem Formulations 

The PDEs for a compressible laminar boundary layer 
which express the conservation of mass, momentum 
and energy can be written as follows: 
 డப୶ (ur୨ߩ) + డப୷ (vr୨ߩ) = 0  (1) 
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uߩ డ௨ப୶ + vߩ డ௨ப୷ = − డ௉ப୶ + ଵ୰ౠ డப୷ ቀݎߤ௝ డ௨డ௬ቁ  (2) డ௣డ௬ = uߩ (3)  0 డுப୶ + vߩ డுப୷ = ଵ୰ౠ డப୷ ቀ ఓ௉௥ ௝ݎ డுడ௬ቁ +ଵ୰ౠ డப୷ ቆߤ ቀ1 − ଵ௣௥ቁ ௝ݎ డడ௬ ቀ௨మଶ ቁቇ  
(4) 

 
Where ݎ is body curvature radius, (x,y) are the 

tangential and normal directions, (u , v)are the 
corresponding velocity components in directions (x 
,y), ρ, p and ܪ are the density, pressure and total 
enthalpy, respectively. µ and ܲݎ are the fluid viscosity 
and prandtl number. 2D or axisymmetric equations can 
be used by selecting ݆ = 0 or ݆ = 1. The physical 
coordinate system (x,y) can be transformed to a 
computational coordinate system (ߦ,  The common .(ߟ
levy-lees transformation can be written as follows [9]: (ݔ)ߦ = ׬ ௕ଶ௝௫଴ݎ௘ݑ௘ߤ௘ߩ ,ݔ)ߟ (5)                                           ݔ݀ (ݕ = ൯ିଵ/ଶߦ௘൫2ݑ ׬ ௝௬଴ݎߩ  (6)                               ݕ݀

 
Thus, the transformed stream-wise momentum and 
energy equations can be written in the forms: 
 డడఎ ൬ܰ డమ௙డఎమ൰ + ݂ డమ௙డఎమ + 2 క௨೐ ௗ௨೐ௗక ൬ఘ೐ఘ − ቀడ௙డఎቁଶ൰ ߦ2= ൬డ௙డఎ డమ௙డకడఎ − డ௙డక డమ௙డఎమ൰                                                 (7) 

డడఎ ቀ ே௉௥ డ௚డఎቁ + ݂ డ௚డఎ + ௨೐మு೐ డడఎ ൬ܰ ቀ1 − ଵ௉௥ቁ డ௙డఎ డమ௙డఎమ൰ ߦ2= ቀడ௙డఎ డ௚డక − డ௙డక డ௚డఎቁ                                                      (8) 

where N = ρμ

ρ౛μ౛, ݃ = ୌୌ౛ and ݂ = ୳୳౛. To “close” 

the preceding system of equations, relations between 
the thermodynamic variables are required along with 
relations for the transport properties μ and k. As it is 
known, the pressure is approximately constant across 
the boundary layer. For the equilibrium air, the relation 
between the pressure, density and temperature (state 
equation) can be written as: ݌ = ℎߩ ఊ෥ିଵఊ෥                                                                  (9) 

For the equilibrium gas, the ratio of specific heats 
෤ߛ :is the function of the pressure and density (෤ߛ) = ,ߩ)෤ߛ  (10)                                                              (݌

There are some approximate curve fits for the 
equilibrium air [15, 16] which give the relations 
between the thermodynamic properties. In the present 
equilibrium flow computations, the ratio of specific 
heats (ߛ෤(ߩ,  and the other thermodynamic ((݌

properties are obtained using the correlations 
developed by Srinivasan et al. [16]. 
 ℎ = ℎ(ߩ, ܶ      ,(݌ = ,ߩ)ܶ  (11)                                    (݌
 

These curve fits are valid for temperatures up to 
25000 K and density ratios (ρ/ρ0) from 10−7 to 103. The 
curve fits for the transport properties were developed 
by Srinivasan et al. [17] and include the following 
correlations: 
ߤ  = ,ߩ)ߤ ܶ), ݇ = ,ߩ)݇ ݁), ݎܲ = ,ߩ)ݎܲ ܶ)             (12) 
 

These curve fits are valid for temperatures up to 
15000 K and the density ratios (ρ/ρ0) from 10−5 to 103.  

For both the equilibrium air and the perfect gas, 
the following relations between flow variables can be 
used [15, 16]: 
݌  = ෤ߛ)݁ߩ − ܧ      ,(1 = ߩ ቂ݁ + ௏మଶ ቃ,        ߛ෤ = ௛௘         (13) 
 

For the perfect gas computations, ߛ෤ = ∞ߛ = 1.4, 
the molecular viscosity ߤis determined by the 
Sutherland law and the coefficient of thermal 
conductivity ܭ is calculated by assuming a constant 
Prandt l number, Pr= 0.72. 

Integral Matrix Procedure 

The basis of the integral matrix algorithm is 
integration of the momentum and the energy equations 
at constant ߦ between two points (j-1 and j) across the 
boundary layer: (݂ܰ′′)௝ିଵ௝ + ׬  ݂௝௝ିଵ ߟ݀′′݂ + ߚ  ׬ ఘ೐ఘ௝௝ିଵ ߟ݀ − ߚ ׬ ݂′ଶ௝௝ିଵ ߟ݀ ׬= 2௝௝ିଵ ቀ݂′ డ௙′డ(௟௡క) − ݂′′ డ௙డ(௟௡క)ቁ  (14)                                        ߟ݀
 ቀ ே௉௥ ݃′ቁ௝ିଵ௝ + ௨೐మு೐ ቀܰ ቀ1 − ଵ௉௥ቁ ݂ ′݂ ′′ቁ௝ିଵ௝ ׬+ ݂௝௝ିଵ ߟ݀′݃ = ׬ 2௝௝ିଵ ቀ݂′ డ௚డ(௟௡క) − ݃′ డ௙డ(௟௡క)ቁ   ߟ݀

(15) 

All terms of the momentum and energy equations 
are discredited by Taylors series. Finally, the 
momentum and energy equation can be simplified as: 
 ൣ݂ܰ′′ + ݂′൫(1 + ݀଴) ௜݂ + ݀ଵ ௜݂ିଵ + ݀ଶ ௜݂ିଶ൯൧௝ିଵ௝ ߚ+ ൤൬ ఘ೐ఘೕ + ఘ೐ఘೕషభ൰ ఋఎଶ + ൬ఘ೐ఘ′ೕఘೕమ + ఘ೐ఘ′ೕషభఘೕషభమ ൰ ఋఎమଵଶ ൨ −(1 + ߚ + 2݀଴)ൣf′୨ XPଵ + f′′୨ XPଶ + f′′′୨ XPଷ +f′′′୨ିଵ XPସሿ − 2ൣf′୨ ZPଵ + f′′୨ ZPଶ + f′′′୨ ZPଷ +f′′′୨ିଵ ZPସሿ = 0  

(16) 

൤ቀ ே௉௥ ݃′ቁ + ௨೐మு೐ ቀܰ ቀ1 − ଵ௉௥ቁ ݂′݂′′ቁ ൨௝ିଵ
௝ +  

ൣ ݃൫(1 + ݀଴) ௜݂ + ݀ଵ ௜݂ିଵ + ݀ଶ ௜݂ିଶ൯൧௝ିଵ௝
  = (1 + 2݀଴) ቂ݂′௝ ܺܲଵ + ݂′′௝ ܺ ଶܲ + ݂′′′௝ ܺ ଷܲ +

(17) 
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݂′′′௝ିଵ ܺ ସܲቃ௣ೕୀ௚ೕ + ቂ݂′௝ ܼ ଵܲ + ݂′′௝ ܼ ଶܲ + ݂′′′௝ ܼ ଷܲ +݂′′′௝ିଵ ܼ ସܲቃ௣ೕୀ௚ೕ + ቂ݃௝ ܼ ଵܲ + ݃′௝ ܼ ଶܲ + ݃′′௝ ܼ ଷܲ +݃′′௝ିଵ ܼ ସܲ൧௣ೕୀ௙′ೕ  
Where, ܺPଵ = ߟߜ ቀ ௝ܲ − ܲ′௝ ఋఎଶ + ܲ′′௝ ఋఎమ଼ + ܲ′′′௝ିଵ ఋఎమଶସ ቁ               (18) ܺPଶ = ଶߟߜ− ቀ௉ೕଶ − ܲ′௝ ఋఎଷ + ܲ′′௝ ଵଵఋఎమଵଶ଴ + ܲ′′′௝ିଵ ఋఎమଷ଴ ቁ       (19) ܺPଷ = ଷߟߜ ቀ௉ೕ଼ − ܲ′௝ ఋఎଵଶ଴ + ܲ′′௝ ଵଵఋఎమସଶ଴ + ܲ′′′௝ିଵ ହఋఎమହ଴ସ ቁ        (20) ܺPସ = ଷߟߜ ቀ௉ೕଶସ − ܲ′௝ ఋఎଷ଴ + ܲ′′௝ ହఋఎమହ଴ସ + ܲ′′′௝ିଵ ఋఎమଶହଶቁ    (21) 

and ܼPଵ = ߟߜ ቀܻ ଵܲ − ܻܲ′ଶ ఋఎଶ + ܻ ଷܲ ఋఎమ଼ + ܻ ସܲ ఋఎమଶସ ቁ     (22) ܼPଶ = ଶߟߜ− ቀ௒௉భଶ − ܻ ଶܲ ఋఎଷ + ܻ ଷܲ ଵଵఋఎమଵଶ଴ + ܻ ସܲ ఋఎమଷ଴ ቁ        (23) ܼPଷ = ଷߟߜ ቀ௒௉భ଼ − ܻ ଶܲ ఋఎଵଶ଴ + ܻ ଷܲ ଵଵఋఎమସଶ଴ + ܻ ସܲ ହఋఎమହ଴ସ ቁ     (24) ܼPସ = ଷߟߜ ቀ௒௉భଶସ − ܻ ଶܲ ఋఎଷ଴ + ܻ ଷܲ ହఋఎమହ଴ସ + ܻ ସܲ ఋఎమଶହଶቁ     (25) 

and ܻPଵ = ݀ଵ ௜ܲିଵ௝ + ݀ଶ ௜ܲିଶ௝                                              (26) ܻPଶ = ݀ଵܲ′௜ିଵ௝ + ݀ଶܲ′௜ିଶ௝                                          (27) ܻPଷ = ݀ଵܲ′′௜ିଵ௝ + ݀ଶܲ′′௜ିଶ௝                                        (28) ܻPସ = ݀ଵܲ′′௜ିଵ௝ିଵ + ݀ଶܲ′′௜ିଶ௝ିଵ                                      (29) 

 d଴, dଵ and dଶ can be calculated by two or three 
points backward discrimination [2]. Equations (16) 
and (17) are linear zed by Newoton-Raphson's method. 
To close the system of equations, five Taylor's series 
for f ،f′ ،f′′،g and g′ can be used. The system of 

equations is implicitly solved for each step and supply 
the necessary information for the next step. Using this 
algorithm, the entire boundary flowfield can be solved 
by space marching technique.  

Boundary Conditions and Initial Data  

The boundary conditions at the wall consist of no-slip 
conditions for velocity components (u = v = 0), a 
specified wall temperature or an adiabatic wall. For a 
perfect gas, the density at the wall is determined using 
the perfect gas relation. For a real gas, the wall density 
is calculated implicitly from the curve fit expression, T 
= T (ρ,p). At the upper boundary, the in viscid flow 
properties which include the velocity, pressure and 
temperature of the edge of boundary layer are applied. 
These properties are calculated from in viscid 
flowfield solution. It is noted that the in viscid solver 
must be also set for equilibrium air when the boundary 

layer is solved by equilibrium assumption (see Figure 
1). Starting data of the boundary layer equations in the 
stagnation point of the blunt geometries are provided 
by the similar Hiemenz solution. 

 

 
 

Fig. 1. Schematic of boundary conditions 

Results and Discussion 

Test case 1 

The first test case is hypersonic laminar flow of 
equilibrium air over a long slender blunted cone. The 
flow conditions for this test case correspond to the 
Reentry-F flight altitude of 36.576 km [18]. The 
Reentry-F configuration is 50 half angle sphere-cone 
with an overall length of 3.962 m and an initial nose 
radius of R୒ = 0.29 cm. The flow conditions are: M∞ = 19.25,    Re∞ = 7570.4  T∞ = 243 K,     T୵ = 361 − 477 K  
 

This is a challenging case to compute high 
Mach number flow over such a large scale model. 
The present boundary layer approach is applied to 
this case to show the efficiency and accuracy of 
the proposed method and to study the effects of 
real gas for long blunt-body geometry. The present 
method needs the conditions of boundary layer 
edge for equilibrium air. These data are provided 
by an in viscid equilibrium code. Figure 2 
indicates the no dimensional pressure contours 
around this geometry for equilibrium air. The 
pressure reference is the infinity pressure. It is 
noted that the pressure is approximately constant 
across the boundary layer. Figures 3 to 5 show the 
distribution of the corresponding surface pressure, 
velocity and temperature for in viscid solution of 
equilibrium air. These conditions are applied as 
upper boundaries for the solution of boundary 
layer equations. As show in Figs. 3 and 5, there is 
an expansion zone near the blunt nose. In fact, 
conversion of a strong bow shock to an oblique 
shock near the nose needs a strong expansion and 
causes strong pressure and temperature decrease.  
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Fig. 2. Pressure contours for 50 blunt cone, ۻ∞ = ૚ૢ. ૛૞ 

 

 

Fig. 3. Surface pressure distribution for 50 blunt cone, M∞ = 19.25 

 

 

Fig. 4. Velocity distribution of boundary layer edge for 50 
blunt cone, M∞ = 19.25 

 

Fig. 5.Temperature distribution of boundary layer edge for 
50 blunt cone, M∞ = 19.25 

The grid distribution and the velocity profiles in 
the boundary layer are shown in Figure 6. The 
maximum number of grid used for this solution is J୑ୟ୶ = 10 and the maximum  ߟ is about 2.75. In this 
case, grid study isperformed for the surface heating 
rates on the wall by J୑ୟ୶ = 10, 15 and 55 (see Figure 
7). It is observed that results captured by less than 10 
points in the boundary layer have some oscillations 
and errors. Thus, 15 points in the boundary layer are 
enough for predicting appropriate results. Comparison 
of the surface heating rates computed by the present 
technique by J୑ୟ୶ = 15 with the experimental Reentry-F 
flight data and the result for the perfect gas is shown in 
Figure8. The Reentry-F flight experiment involved the 
accurate measurement of surface heating rates on a 
long slender conical RV under laminar flow 
conditions. The results of the present solution are 
found to be in a better agreement with the 
experimental data. The results show the surface 
heating rates for the equilibrium air are higher than 
those of the perfect gas up to about 18%. This may be 
because of decrease of the boundary layer thickness 
due to the real gas effects. Figure 9 compares the 
computed skin friction coefficient distribution for the 
solutions with the equilibrium and perfect gas 
assumption. It is observed that the skin friction 
coefficient, rather than the perfect gas, is increased 
when the equilibrium air is used for simulation. By 
comparing the viscosity coefficient between the 
perfect gas and the equilibrium air, it is found that the 
calculated viscosity from the curve fits (ߤ = ,ߩ)ߤ ܶ)) 
for the equilibrium model ishigher than that of the 
perfect model (ߤ = ,ߩ)ߤ ܶ)). This also causes higher 
velocity gradient and thus higher skin friction 
coefficient in comparison with the perfect model.  
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Fig.  6. Grid distribution and velocity vectors for 50 blunt 
cone, M∞ = 19.25 

 

 

Fig. 7. Grid study of the surface heating rates for 50 blunt 
cone, M∞ = 19.25 

 

 

Fig. 8. Comparison of the surface heating rates for 50 blunt 
cone, M∞ = 19.25 

 

Fig. 9. Comparison of the skin friction coefficient for 50 
blunt cone, M∞ = 19.25 

For the equilibrium airflow computation, the 
typical CPU time of the boundary layer solution, using 
10 grid points in the wall normal direction and 15000 
sweeps in the stream-wise direction is about 90 
seconds. It is clear that the present boundary layer 
solution strategy significantly reduces the computer 
time and storage required to obtain the equilibrium 
hypersonic flowfield with a reasonable accuracy. 

Test case 2 

The second test case computed is hypersonic laminar 
flow of equilibrium air over a 12.840 half angle bicone. 
The nose radius for this case is R୒ = 0.29 m. This test 
case was tested in NASA Langley Expansion-Tube 
Facility [14]. The flow conditions are: 
 M∞ = 6.89,    Re∞ = 1695,   T∞ = 1604 K,     T୵ = 302 − 388 K  
 

This test case is used to study the high 
temperature effects and shows the efficiency and 
accuracy of the present code. Fully laminar flow 
conditions are assumed and both the perfect and 
equilibrium airflow computations are performed. 
Figures 10 and 11 indicate the no dimensional pressure 
contour and distribution of the surface pressure for in 
viscid solution around this geometry. Distribution of 
the surface temperature for in viscid solution is shown 
in figure 12. These data are applied as conditions at 
upper boundaries of the boundary layer equations. The 
grid distribution in the boundary layer is shown in 
figure 13. The maximum number of grid used for this 
solution is J୑ୟ୶ = 10 and the maximum  ߟ is about 
3.1. In this case, grid study is also performed for the 
surface heating rates on the wall by J୑ୟ୶ =5, 10 and 28 (see Fig. 14). It is observed that 10 points 
in the boundary layer are enough for predicting 
appropriate results. 
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Fig. 10. Pressure contours for 12.840 blunt cone, ܯ∞ = 6.89 

 

Fig. 11. Surface pressure distribution for 12.840 blunt cone, ܯ∞ = 6.89 

 

Fig. 12. Temperature distribution of boundary layer edge for 
12.840 blunt cone, ܯ∞ = 6.89 

Fig. 13. Grid and velocity vectors for 12.840 blunt cone, ܯ∞ = 6.89 

 

Fig. 14. Grid study of the surface heating rates for 12.840 
blunt cone, ܯ∞ = 6.89 

Figure 15, compares the results of the surface 
heating rates from the present code with the experiment 
[19]. The present computations are performed for both 
the perfect and equilibrium airflows. The results show 
that the perfect-gas model underestimate the wall heat-
transfer rates about 12%. The present predictions of the 
equilibrium air are in better agreement with the 
experimental data. In this case, the CPU time of the 
boundary layer solution, using 10 grid points in the wall 
normal direction and 175 sweeps in the stream wise 
direction, is less than 10 sec with a reasonable accuracy. 

 

 

Fig. 15. The surface heating rates for 12.840 blunt cone, ܯ∞ = 6.89 
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Test case 3 

To investigate the results near the stagnation region, 
the third test case is performed for hypersonic laminar 
flow of equilibrium air over a sphere with nose radius 
of R୒ = 0.25 m. The flow conditions are 
 M∞ = 11.26,    Re∞ = 4976.16  T∞ = 182.33 K,     T୵ = 1000 K  
 

This condition is according to flight data at 
250,000 ft height and velocity 10,000 ft/s. Distribution 
of the surface temperature, pressure and velocity for in 
viscid solution are shown in figure 16. These data are 
applied as conditions at upper boundaries of boundary 
layer equations. The maximum number of grid used 
for this solution is J୑ୟ୶ = 15 and the maximum  ߟ is 
about 2.9. Fig. 17 compares the results of the surface 
heating rates from the present code with the numerical 
results of Ref. [14] which are created by the second 
order finite difference Beam-Warming method and 
shock fitting algorithm. The present predictions of the 
equilibrium air near the stagnation region are in good 
agreement with this numerical result. 

 

 

Fig. 16. Surface pressure, temperature and velocity 
distribution for sphereܯ∞ = 11.26 

 

Fig. 17. The surface heating rates for sphere, ܯ∞ = 11.26 

 

Fig. 18. The surface heating rates for sphere, ܯ∞ = 11.26 

Conclusions 

In the present work an accurate and efficient 
computational procedure is developed to predict the 
laminar hypersonic flowfield for both the perfect gas 
and equilibrium air around the axisymmetric blunt body 
configurations. The numerical algorithms based on the 
integral matrix procedure with Taylor's series using the 
Newton-Raphson's linearization can provide accurate 
and smooth solutions for blunt nose and after-body 
region. Using a space marching technique and the 
integral matrix procedure enable us to create accurate 
and smooth results using the minimum grid in the 
boundary layer and to minimize the computational 
costs. This algorithm is highly appropriate for the design 
of hypersonic reentry vehicles. To demonstrate the 
accuracy and efficiency of using the present algorithm, 
two computations are performed for hypersonic flows 
over blunt-bodies. Comparison of the results, especially 
heating rate on the body surface, between perfect gas 
and equilibrium air is performed for three cases and the 
effects of real gas on the flowfield characteristics are 
also studied in the boundary layer solutions. The results 
of these computations are compared with available 
numerical and experimental results. Comparisons of the 
results with experimental data demonstrate that higher 
and more accurate solutions are obtained by equilibrium 
assumption as compared with the perfect gas. 
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