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In this paper the feasibility of rapid alignment and calibration of a static strapdown
inertial navigation system (INS) is evaluated. Resting conditions including zero-velocity
update and a known initial heading direction as virtual external measurement data are
integrated with INS data. By comparing the virtual external measurements with the
estimates of those generated by the aligning INS, estimates of the velocity and heading
errors can be obtained and these errors will be propagated in the INS as a result of
alignment inaccuracies. An extended Kalman filter based on an augmented process model
and a measurement model is designed to estimate alignment attitudes and biases of
inertial sensors. Monte Carlo simulation results show that the integration of INSwith rest
conditions is very effective in rapid and fine leveling and azimuth alignment of INS, but
this type of data fusion due to poor acceleration and angular rates of static condition has
no chance of valuable calibration of all inertial sensor biases.
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Nomenclature

North-East-Down: navigation frame (n-

NED
frame)
L Latitude
I Longitude
h Height above ground
Vn North velocity
Vi East velocity
Vb Down velocity
Oy Alignment error in roll attitude

Q5 Alignment error in pitch attitude

®p Alignment error in heading

Direction cosine matrix from body frame to
navigation frame (NED)

5fE Accelerometer measurement errors

Swf;  Gyroscope measurement errors

7, Radius of Earth curvature in the meridian
Radius of Earth curvature of the ellipsoid in
the prime vertical

wh Gyroscopes measurements

wl. Earth’sinertial angular velocity in navigation

n
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frame
wE, Tur_n rate of the b(_)dy with respect to
navigation frame in the body frame
Turn rate of the local navigation frame with
wly respect the Earth fixed frame in navigation

frame
fs Accelerometers measurements
nNE,  Skew-symmetric form of w2,
gV Local gravity vector in navigation frame

I ntroduction

The alignment of an strapdown inertia navigation
system determines the transformation matrix between
a body frame and a navigation frame in the local-level
frame [1]. The initial alignment of inertial navigation
system is an important process performed prior to
normal navigation [2].Since INS is entirely self-
contained, it can align itself using the measurements of
local gravity and Earth rate. Normally, alignment
process is divided into two phases, i.e. the coarse and
fine alignment. The purpose of coarse alignment is to
provide fairly good initial condition for the fine
alignment processing. Typicaly, the threshold of the
attitude errors between the two categories can reach a
few degrees[3]. The stationary initial alignment which
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consists of a coarse alignment and a fine alignment is
usually performed when avehicleis at rest. In order to
reduce theinitial alignment time for some applications,
the coarse alignment is only performed or the initial
attitudes is directly obtained from other sources such
as stored information or a master inertial navigation
system [1]. In most ground based applications,
gyrocompass sing is known to be a common fine self-
alignment method, but it is time-consuming. The basic
concept of INS alignment is quite simple and straight
forward. However, there are many complications that
make alignment both time-consuming and complex.
Accurate alignment is crucia; however, if precison
navigation is to be achieved over long periods of time
without any form of aiding. In many applications, it is
essentia to achieve an accurate aignment of an inertia
navigation system within avery short period of time. This
isparticularly truein many military applications, in which
a very rapid response time is often a prime requirement
for obtaining avery short reaction time [4].

As a solution for overcoming these problems, the
use of rest constraints, i.e. constant position and
attitude, is especially appealing for initial aligning INS
or constraining INS errors. In this situation, the
motion of the vehicle can be governed by some non-
holonomic constraints, [5]. For example, Ref. [6] uses
the zero-velocity updates (ZUPT) for initial aignment
and calibration of a stationary strapdown INS. ZUPT
is applied for constraining foot-mounted INSs, as
during ordinary gait, the foot returns to a "stationary"
state on a regular base [7, 8]. For details on the
benefits of ZUPT, one can refer to [9] and the
references there in. Algorithms for fast estimating the
azimuth misalignment angle and calibrating gyro drift
rates are approached from the point of view of control
theory and by introducing the Lyapunov transformation.
The equivalence of strapdown INS and gimbaled INS is
discussed in [10]. A new solution for the precise
azimuth alignment is given in detail in [11] and a new
profiler, which consists of an IIR filter and a Kalman
filter using hidden Markov model, is designed to
atenuate the influence of sensor noise and outer
disturbance. Ref. [12] addresses self-alignment of a
strapdown INS in near-stationary condition using the
east gyro outputs from the inertial measurement unit,
aong with the velocity outputs in a nonlinear state
estimation framework using extended Kalman filter
(EKF). In [13], initial aignment and calibration
performance of a gimbaled INS is enhanced using the
design and implementation of an optimal stochastic
close loop controal.

All above-mentioned researches are related to the
initial alignment of INS using rest conditions a
determined and constant heading into the alignment
process as an extra constraint in stationary state was
not applied. In this work, in order to enhance the
alignment and calibration performances, in addition to
ZUPT technique, a known direction as new
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measurements for updating the Kalman filter is used.
By comparing the virtual external velocities and
heading with the estimates of those generated by the
aligning system, estimates of the velocities and
heading errors are obtained and these errors will
propagate in the system as a result of alignment
inaccuracies. Based on an augmented error model of
the system and using an extended Kaman filter, it is
possible to deduce the INS alignment and some biases
of inertial sensors from the innovation signas. In
practical cases, these rest constraints are quite
reasonable for vehicles in recharging, though violated
due to for example the vibrations of the vehicle engine
and buffeting by wave or wind. In fact, in such a
situation, the mean attitude of the aligning system with
respect to the local geographic frame is fixed, and the
specific force and turn rates to which the aligning
system is subjected, are nominaly fixed.

The paper is organized as follows. Firstly, the
process and measurement model for the integration
system are provided. Secondly, observability of the
system is analyzed. Thirdly, an extended Kalman filter
is designed and outlined for the data fusion. Fourthly,
some Monte Carlo simulations are carried out to
illustrate the functionality and usefulness of the new
aignment and cdibration method. Finadly, the
concluding remarks are presented.

Augmented Error M odel

The navigation equations for an SDINS in n-frame
(north, east and down: NED) are [4]:

j = v

L - rL+h (1)
. _ VE

L= (ry+h)cosL (2)
V¥ = Cifs — Quiz + wi) XV + g @
Cf = CH g (5)

After applying the rest conditions, the linear
differential equations of those equations as follows:

A= %é\/N ©)
d= r cisL Ve @)
h=-v, ®)
Ny = 9¢e + 2w, Vg + By, )
N =0 ~ 20V, +Be (10)
Np =—-2wNVg + By (12)
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. 1

PN = OpPe +Fé\/E +wpdl — Dy (12)
. 1

Pe = ~Wp P\ + ONPp _?é\/N —De (13)
. tanL

Pp = —OyPg ———Ng — oy - Dy (14)

Where wy and wpare the Earth rate represented
in the n-frame and r is the radius of the Earth with the
assumption of:

r=r,+h=r+h=r, =7 (15)

Also,@y, pgandepare attitude errors and B and D
are fixed biases and drifts of accelerometers and gyros
in the n-frame ,respectively.

B=[B, Bz B,] =CY&® (16)
D=[D, D D[ =CYowd (17)

Due to short alignment time and using precise
inertial sensors, it is suitable to consider these biases as
constant variables. Therefore, the dynamic equations
for biases are:

B=0

D=0
The state-space system model can be formed
from the differential equations of the navigation errors

and the dynamics of inertial sensors. The error state
variable x(t) consists of navigation errors and sensor

bias errors. In the model, @(t) process noise or

inertial sensor noise, is white noise with zero mean and
covariance Q(t). The linear time-varying stochastic
system model is

X(t) = F(t)x(t) + o(t) (19
Where

(18)

X = [SVN, SVE, 6VD’<pN’<pE' (pD,BN’BE'BD’ e
’DN;DE’DD]T (20)
w = [wBN,wBE,wBD, Wpy» Wpg wDD,O, 0,0,..

0,0,0]” (21)

Fiq F;  Izxz  Osxs
F=|Fy1 Fp 03 —I3g (22)
06><3 06><3 06><3 06><3 12X12
Where
0 2wp 0
F11= _ZwD 0 Zle (23)
0 —2wy 0
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0 g O
Fiz=|-g 0 0] (24)
0 0 O
0 1/r 0
Fy =|-1/r 0 Ol (25)
0 —tanlL/r O
F22 = %Fll (26)

M easurement M odéel

This paper introduces additional measurements of the
velocities and heading to improve the aignment
performance of the navigation system. When the
navigation unit is assumed to be stationary, it can be
inferred that

Vag = [VN Ve Wb ]T =034 27)
Wag =Wo =Cte

Because the stationary conditions is violated due

to for example the vibrations of the vehicle engine and

buffering by wave and wind, so the measurement
models are formulated by adding white noise, y(t),

with azero mean and covariance R:
Y1(ty) =Vins —Vaig =V — V4 (28)

Y2 (k) = Wins —W aia = O — OY pig (29)

Where subscripts INS and AID denote the INS
estimates and the aided virtual sensors measurements,
respectively. The state space form of measurement is:

y(t) = H ) x(t )+ r(ty) (30)

Two cases are introduced for being studied in this
work and their results are compared:
Case study 1: INS and ZUPT will be integrated and
the measurement matrix is:

1000
|

H=|0 1 0!0, (31)
00110

Case study 2: INS will be aided by ZUPT and a
known initial constant heading and the measurement
matrix is:

10000 0!0,

|

010000!0
H = | e (32)

00100 00,

0000O0T1i0
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Observability Analyses

Observability analysis of a dynamic system indicates
the efficiency of a Kalman filter designed to estimate
the states of the system. While the observability
analysis of atime invariant system is rather simple, the
analysis of a time varying system is difficult. If the
time varying system is replaced by a piece-wise time
invariant system, the observability anaysis can be
performed simply by the stripped observability matrix
suggested by [14]. It was aready known that the strap-
down INS in a stationary alignment process only using
the zero-velocity measurement is not completely
observable[15]. The results of analyses using
observability matrix, O(F,H) are as follows (for

cosL #0):

For case 1 (ZUPT Aided):

The Rank of O is 9 and these three states are not
observable:

North accelerometer bias, B,
East accelerometer bias, B
East gyro bias, Dg

For Case2 (ZUPT and Initial Constant Heading Aided):
The Rank of O is 10and two states are not observable:

North accelerometer bias, B,

East accelerometer bias, B

Kalman Filter

An indirect feedback Kaman filter has been widely
used to estimate the errors for a strap-down inertial
navigation system alignment employing an EKF in
which small nonlinear approximation errors and initial
errors are assumed. Probably the most widely used
estimator for nonlinear systems is that of Kalman,
namely the extended Kalman filter [16]. The EKF
applies the Kaman filter to nonlinear systems by
simply linearizing al the nonlinear models so that the
traditional linear Kalman filter equations (LKF) can be

applied.

For applying this filter, it is necessary to use the
discrete form of Eg. (19) and to introduce the
covariance of the process noises, Q, the covariance of
the measurement noises, R, and the covariance of initial
estimation error, P,. The Kaman filter period is 1
second and the initia attitude and heading errors are 1
degree. Some stochastic specifications of the inertial
navigation system are as follows:
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Table 1. Inertial Navigation System Sensor Specifications

Accelerometer s Spec. Gyros Spec.

. . 0.01
Fixed Bias, 100 ) .
! Fixed Drift, (1o d

_ 0.06 0.01
Velodity Random | Angular Random deg
wak (lo) —_— walk (1o —
i ] T

The process and measurement noise covariance
matrix and initial estimation error matrix for case
study 1respectively are:

.06m
60 s2

.06m
60 s2

.06m
60 s2

Q= diag[(; )% (D% (G2

,(.01 Eﬂ)z (33)

N

s
Iso radyp
, (.01 00 s )

180 d
(01 180 79992 0, ]2z

T
iinm
('0160 s) 60 s

R:onag[(o.m'm)2 0.00™)2 (0.01m)2} (34)
S S S

Py = diag[(.1 m)2, (1 m)2, (1 m)2 )

(=rad)?, (—rad)2 (—rad)2 (.001- 2.

180

,(0015)2,(.0015)? , (0122 ”‘d) L &

3600 s

180 rad

rad
( 1 180 )2 ( 3600 s ) ]12)(12

3600

The process and measurement noise covariance
matrix and initial estimation error covariance matrix
for case study 2 are:

Q and P, are equal to those of casel but Ris

R = diag [( 01m)2 ’ (.Olm) 01m (i;;z) ] (36)

N

After estimating the bias components in n frame,
it is possible to calculate them in b frame:

=CS[BN Be BD]T (37)

D®=Cc)[D, Dg Dyl (38)

If in some case studies By, Bgor Dg are not

observable, we can put them equal to zero in the
equations to avoid the unobservable states adding an
error variance toall the origina states that are not
measured directly.
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Simulation Results

The predictions of system accuracy provided by covariance
andysis can be veified by computer smulation of the
alignment procedure. Because many of the quantities that
are treated only in terms of their Setisticd parameters in
the error analysis must be specified in the smulation, a
number of computer runs would be required to provide
religble probability distribution for the estimation errors.
Since both the truth model and the filter modd are driven
by randomly generated noise, each individua Monte Carlo
run is expected to be different. Therefore, in order to
generate error satistics with a Monte Carlo program, a
given case is iterated many times, the iterations differing
only in the random number input sequences. The results of
the iterations are then averaged to obtain the desred
statistics consequently, ohserving the ensemble atistics of
severa runs gives an indication of the expected
performance of the filter. Naturdly, the more runs are
mede, the more reliable become the datistics. Between 25
and 50 runs is typicdly used to determine filter
performance [17]. Each run produces a different sequence
of random numbers to generate the samples of input white-
noise processes. The results presented here should be
regaded as one run from batch of 25 Monte-Carlo
smulations, and as such, only indicate the “potentia”
accuracy of the dignment technique. Monte-Carlo
smulations were carried out for two cases. Thefirg oneis
the zero velocity updates (case 1) and the second oneisthe
zero velocity updates and initid heading knowledge (case
2), for example the direction of a runway, s fluxgate
magnetometer or acompass.

The integration time step for navigation equations
is 0.01 sec and True initia attitudes and heading are
zero degree. Also, the inertid navigation system is
compensated by using the estimation results of
velocities, attitudes and heading but because some
biases and drifts are not observable, none of these are
corrected in the INS. The simulation results are
illustrated below:

Fig.1 shows that velocity outputs of the INS are
limited. It is obvious that if there are not zero velocity
updates, the north and east velocity components
oscillate with Schuler period and the down velocity
component grows unboundedly.Fig.2-5 present that
the attitude alignment results (roll and pitch) are fine
and the estimation errors are decreased effectively
within few seconds. Also, there is not a significant
difference between the results of the two cases. In the
estimation of heading, there is a capital difference
between two cases. When only zero velocities are
measurements although the heading is observable, the
estimation error was decreased in a few minutes
period. However, in case 2, the heading is limited to
the initial heading input as a measurement from the
incipient stage of dada fusion.
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Fig. 1.Velocity componentsin NED frame
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As mentioned in the observability analysis
paragraph the north and east bias are not observable,
hence the filter cannot estimate the biases even after
aong time and the estimation errors are nearly
constant. Nevertheless, the filter estimates the down
bias precisely and the convergence time of the
estimation is about a few minutes, Figs. 6-7. In the
estimation of biases, there are not differences between
the filter performancesin the two cases.

Fig.8 depicts the drift estimation results of gyros:
In case 1, the east drift is not observable and as the
results show, the estimation error does not decrease.
Also, both the north and down drifts can be estimated
but the estimation convergence time of the north drift
is better that of the other one. In case 2, the estimation
results for the north and down drifts are nearly similar
to casel. Nonetheless, due to the observability of the
east drift, its estimation error decreases and it can be
estimated.
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Conclusions and Future Work

Integration of inertial navigation system (INS) with
zero-velocity updates (ZUPT) is very effectivein rapid
and fine leveling of INS but this technique without an
extra measurement for heading (e.g. a known direction
or heading) has no chance for alignment of heading.
Although some biases and drifts of inertial sensors are
observable in the fusion of INS data with ZUPT, the
estimation convergence speed of nearly al of them are
very slow due to poorness of accelerations and angular
rates in rest condition. In fact, the fusion cannot help in
operation calibration of inertial sensors practically and
it is necessary to try new fusions such as INS aided
with zero east angular rate of earth condition in future.
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