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In this paper the feasibility of rapid alignment and calibration of a static strapdown 
inertial navigation system (INS) is evaluated. Resting conditions including zero-velocity 
update and a known initial heading direction as virtual external measurement data are 
integrated with INS data. By comparing the virtual external measurements with the 
estimates of those generated by the aligning INS, estimates of the velocity and heading 
errors can be obtained and these errors will be propagated in the INS as a result of 
alignment inaccuracies. An extended Kalman filter based on an augmented process model 
and a measurement model is designed to estimate alignment attitudes and biases of 
inertial sensors. Monte Carlo simulation results show that the integration of INS with rest 
conditions is very effective in rapid and fine leveling and azimuth alignment of INS, but 
this type of data fusion due to poor acceleration and angular rates of static condition has 
no chance of valuable calibration of all inertial sensor biases.  
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Nomenclature123 
NED 

North-East-Down: navigation frame (n-
frame) 

L Latitude 
l Longitude 
h Height above ground ேܸ  North velocity ாܸ  East velocity ஽ܸ  Down velocity ߮ே  Alignment error in roll attitude ߮ா  Alignment error in pitch attitude ߮஽  Alignment error in heading  ܥ஻ே  

Direction cosine matrix from body frame to 
navigation frame (NED) ݂ߜ஻  Accelerometer measurement errors ߱ߜூ஻஻   Gyroscope measurement errors ݎ௅  Radius of Earth curvature in the meridian ݎ௟  Radius of Earth curvature of the ellipsoid in 
the prime vertical ߱ூ஻஻   Gyroscopes measurements ߱ூாே   Earth’s inertial angular velocity in navigation 
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frame ߱ே஻஻   
Turn rate of the body with respect to 
navigation frame in the body frame ߱ாேே   
Turn rate of the local navigation frame with 
respect the Earth fixed frame in navigation 
frame ஻݂  Accelerometers measurements ߗே஻஻   Skew-symmetric form of ߱ே஻஻  ௟݃ே  Local gravity vector in navigation frame  

Introduction 

The alignment of an strapdown inertial navigation 
system determines the transformation matrix between 
a body frame and a navigation frame in the local-level 
frame [1]. The initial alignment of inertial navigation 
system is an important process performed prior to 
normal navigation [2].Since INS is entirely self-
contained, it can align itself using the measurements of 
local gravity and Earth rate. Normally, alignment 
process is divided into two phases, i.e. the coarse and 
fine alignment. The purpose of coarse alignment is to 
provide fairly good initial condition for the fine 
alignment processing. Typically, the threshold of the 
attitude errors between the two categories can reach a 
few degrees [3]. The stationary initial alignment which 



Journal of Space Science and Technology 
Vol. 8/ No. 4/ 2015 46 / 

  
 
 

M. Fathi, A. Mohammadi and N. Ghahramani 
 

consists of a coarse alignment and a fine alignment is 
usually performed when a vehicle is at rest. In order to 
reduce the initial alignment time for some applications, 
the coarse alignment is only performed or the initial 
attitudes is directly obtained from other sources such 
as stored information or a master inertial navigation 
system [1]. In most ground based applications, 
gyrocompass sing is known to be a common fine self-
alignment method, but it is time-consuming. The basic 
concept of INS alignment is quite simple and straight 
forward. However, there are many complications that 
make alignment both time-consuming and complex. 
Accurate alignment is crucial; however, if precision 
navigation is to be achieved over long periods of time 
without any form of aiding. In many applications, it is 
essential to achieve an accurate alignment of an inertial 
navigation system within a very short period of time. This 
is particularly true in many military applications, in which 
a very rapid response time is often a prime requirement 
for obtaining a very short reaction time [4]. 

As a solution for overcoming these problems, the 
use of rest constraints, i.e. constant position and 
attitude, is especially appealing for initial aligning INS 
or constraining INS errors. In this situation, the 
motion of the vehicle can be governed by some non-
holonomic constraints, [5]. For example, Ref. [6] uses 
the zero-velocity updates (ZUPT) for initial alignment 
and calibration of a stationary strapdown INS.  ZUPT 
is applied for constraining foot-mounted INSs, as 
during ordinary gait, the foot returns to a "stationary" 
state on a regular base [7, 8]. For details on the 
benefits of ZUPT, one can refer to [9] and the 
references there in. Algorithms for fast estimating the 
azimuth misalignment angle and calibrating gyro drift 
rates are approached from the point of view of control 
theory and by introducing the Lyapunov transformation. 
The equivalence of strapdown INS and gimbaled INS is 
discussed in [10]. A new solution for the precise 
azimuth alignment is given in detail in [11] and a new 
profiler, which consists of an IIR filter and a Kalman 
filter using hidden Markov model, is designed to 
attenuate the influence of sensor noise and outer 
disturbance. Ref. [12] addresses self-alignment of a 
strapdown INS in near-stationary condition using the 
east gyro outputs from the inertial measurement unit, 
along with the velocity outputs in a nonlinear state 
estimation framework using extended Kalman filter 
(EKF). In [13], initial alignment and calibration 
performance of a gimbaled INS is enhanced using the 
design and implementation of an optimal stochastic 
close loop control. 

All above-mentioned researches are related to the 
initial alignment of INS using rest conditions a 
determined and constant heading into the alignment 
process as an extra constraint in stationary state was 
not applied. In this work, in order to enhance the 
alignment and calibration performances, in addition to 
ZUPT technique, a known direction as new 

measurements for updating the Kalman filter is used. 
By comparing the virtual external velocities and 
heading with the estimates of those generated by the 
aligning system, estimates of the velocities and 
heading errors are obtained and these errors will 
propagate in the system as a result of alignment 
inaccuracies. Based on an augmented error model of 
the system and using an extended Kalman filter, it is 
possible to deduce the INS alignment and some biases 
of inertial sensors from the innovation signals. In 
practical cases, these rest constraints are quite 
reasonable for vehicles in recharging, though violated 
due to for example the vibrations of the vehicle engine 
and buffeting by wave or wind. In fact, in such a 
situation, the mean attitude of the aligning system with 
respect to the local geographic frame is fixed, and the 
specific force and turn rates to which the aligning 
system is subjected, are nominally fixed. 

The paper is organized as follows. Firstly, the 
process and measurement model for the integration 
system are provided. Secondly, observability of the 
system is analyzed. Thirdly, an extended Kalman filter 
is designed and outlined for the data fusion. Fourthly, 
some Monte Carlo simulations are carried out to 
illustrate the functionality and usefulness of the new 
alignment and calibration method. Finally, the 
concluding remarks are presented. 

Augmented Error Model 

The navigation equations for an SDINS in n-frame 
(north, east and down: NED) are [4]: ܮሶ = ௏ಿ௥ಽା௛                                                                     (1) ݈ሶ = ௏ಶ(௥೗ା௛) ୡ୭ୱ ௅                                                             (2) ℎሶ = − ஽ܸ                                                                     (3) ሶܸ ே = ஻ேܥ ஻݂ − (2߱ூாே + ߱ாேே ) × ܸே + ݃௟ே         (4) ܥሶ஻ே = ே஻஻ߗ஻ேܥ                                                              (5) 

After applying the rest conditions, the linear 
differential equations of those equations as follows: 

                                                               (6) 

                                                      (7) 

                                                       (8) 

                                     (9) 

 (10)

                                          (11) 
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DVh  

NEDEN BVgV   2

ENDNE BVgV   2

DEND BVV   2
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(13)

 

DNEEND DLV
r

L   tan


            
(14) 

Where ߱ே and ߱஽are the Earth rate represented 
in the n-frame and r is the radius of the Earth with the 
assumption of:  ݎ = ௅ݎ + ℎ=ݎ௟ + ℎ=ݎ௅ =  ௟                                      (15)ݎ

Also,߮ே, ߮ாand߮஽are attitude errors and B and D 
are fixed biases and drifts of accelerometers and gyros 
in the n-frame ,respectively. 

                         (16) 

                         (17) 

Due to short alignment time and using precise 
inertial sensors, it is suitable to consider these biases as 
constant variables. Therefore, the dynamic equations 
for biases are: 

                                                                    

(18) 

The state-space system model can be formed 
from the differential equations of the navigation errors 
and the dynamics of inertial sensors. The error state 
variable x(t) consists of navigation errors and sensor 
bias errors. In the model, process noise or 

inertial sensor noise, is white noise with zero mean and 
covariance Q(t). The linear time-varying stochastic 
system model is 

                                      (19) 

Where ݔ = ߜൣ ேܸ, ߜ ாܸ, ߜ ஽ܸ, ߮ே, ߮ா, ߮஽ ,ܤே, ,ாܤ ,஽ܤ … , ,ேܦ ,ாܦ ߱ ஽]்                                                      (20)ܦ = ൣ߱஻ಿ, ߱஻ಶ, ߱஻ವ,  ߱஽ಿ,  ߱஽ಶ, ߱஽ವ, 0, 0, 0, … 0,0,0]்                                                               (21) 

ܨ = ൥ ଶଵ0଺×ଷܨଵଵܨ
ଶଶ0଺×ଷܨଵଶܨ

ଷ×ଷ0ଷ×ଷ0଺×ଷܫ
0ଷ×ଷ−ܫଷ×ଷ0଺×ଷ ൩ଵଶ×ଵଶ               (22) 

Where 

ଵଵܨ = ൥ 0 2߱஽ 0−2߱஽ 0 2߱ே0 −2߱ே 0 ൩                            (23) 

ଵଶܨ = ൥ 0 ݃ 0−݃ 0 00 0 0൩                                             (24) 

ଶଵܨ = ൥ 0 ݎ/1 ݎ/0−1 0 00 ݎ/ܮ݊ܽݐ− 0൩                              (25) 

ଶଶܨ = ଵଶ  ଵଵ                                                         (26)ܨ

Measurement Model 

This paper introduces additional measurements of the 
velocities and heading to improve the alignment 
performance of the navigation system. When the 
navigation unit is assumed to be stationary, it can be 
inferred that 

                                   

(27) 

Because the stationary conditions is violated due 
to for example the vibrations of the vehicle engine and 
buffering by wave and wind, so the measurement 
models are formulated by adding white noise, , 

with a zero mean and covariance R: 

                      (28)  

                    (29) 
 

Where subscripts INS and AID denote the INS 
estimates and the aided virtual sensors measurements, 
respectively. The state space form of measurement is: 

                                  (30) 

Two cases are introduced for being studied in this 
work and their results are compared: 
Case study 1: INS and ZUPT will be integrated and 
the measurement matrix is: 
 

                                      (31) 

 
Case study 2: INS will be aided by ZUPT and a 
known initial constant heading and the measurement 
matrix is: 
 

                (32) 
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Observability Analyses 

Observability analysis of a dynamic system indicates 
the efficiency of a Kalman filter designed to estimate 
the states of the system. While the observability 
analysis of a time invariant system is rather simple, the 
analysis of a time varying system is difficult. If the 
time varying system is replaced by a piece-wise time 
invariant system, the observability analysis can be 
performed simply by the stripped observability matrix 
suggested by [14]. It was already known that the strap-
down INS in a stationary alignment process only using 
the zero-velocity measurement is not completely 
observable[15]. The results of analyses using 
observability matrix, are as follows (for 

): 

For case 1 (ZUPT Aided): 

The Rank of O is 9 and these three states are not 
observable: 

North accelerometer bias,  

East accelerometer bias,  

East gyro bias,  

For Case2 (ZUPT and Initial Constant Heading Aided):  

The Rank of O is 10and two states are not observable: 

North accelerometer bias,  

East accelerometer bias,  

Kalman Filter 

An indirect feedback Kalman filter has been widely 
used to estimate the errors for a strap-down inertial 
navigation system alignment employing an EKF in 
which small nonlinear approximation errors and initial 
errors are assumed. Probably the most widely used 
estimator for nonlinear systems is that of Kalman, 
namely the extended Kalman filter [16]. The EKF 
applies the Kalman filter to nonlinear systems by 
simply linearizing all the nonlinear models so that the 
traditional linear Kalman filter equations (LKF) can be 
applied. 

For applying this filter, it is necessary to use the 
discrete form of Eq. (19) and to introduce the 
covariance of the process noises, Q, the covariance of 
the measurement noises, R, and the covariance of initial 
estimation error, P0. The Kalman filter period is 1 
second and the initial attitude and heading errors are 1 
degree. Some stochastic specifications of the inertial 
navigation system are as follows: 

Table 1. Inertial Navigation System Sensor Specifications 

Accelerometers Spec. Gyros Spec. 

Fixed Bias, 
 

100 
µg 

Fixed Drift,  
0.01

 

Velocity Random 
Walk  

0.06

 
Angular Random 

Walk  

0.01

 

 

The process and measurement noise covariance 
matrix and initial estimation error matrix for case 
study 1respectively are: 

 ܳ = ݀݅ܽ݃[(.଴଺଺଴ ௠௦మ)ଶ, (.଴଺଺଴ ௠௦మ)ଶ, (.଴଺଺଴ ௠௦మ)ଶ …    , (.01 ഏభఴబ଺଴ ௥௔ௗ௦ )ଶ  , ( .01 ഏభఴబ଺଴ ௥௔ௗ௦ )ଶ  …  

( .01 ഏభఴబ଺଴ ௥௔ௗ௦ )ଶ, (.01 ഏభఴబ଺଴ ௥௔ௗ௦ )ଶ  0ଵ×଺]ଵଶ×ଵଶ              

(33) 

 

      

(34) 

଴ܲ = ݀݅ܽ݃[(.1 ௠௦ )ଶ, (.1 ௠௦ )ଶ, (.1 ௠௦ )ଶ , …   ( గଵ଼଴ ,ଶ(݀ܽݎ ( గଵ଼଴ , ଶ(݀ܽݎ ( గଵ଼଴ ,ଶ(݀ܽݎ (.001 ௠௦మ)ଶ  …            , (.001 ௠௦మ)ଶ , (.001 ௠௦మ)ଶ  , (.01 ഏభఴబଷ଺଴଴ ௥௔ௗ௦ )ଶ …  

, (.01 1803600ߨ ݏ݀ܽݎ )ଶ, (.01 1803600ߨ ݏ݀ܽݎ )ଶ]ଵଶ×ଵଶ 

(35) 

 

The process and measurement noise covariance 
matrix and initial estimation error covariance matrix 
for case study 2 are: 
Q and P0 are equal to those of case1 but R is 

ܴ = ݀݅ܽ݃ ൤ቀ.଴ଵ௠௦ ቁଶ , ቀ.଴ଵ௠௦ ቁଶ , ቀ.଴ଵ௠௦ ቁଶ , (଴.ଵగଵ଼଴ )ଶ൨        (36) 

After estimating the bias components in n frame, 
it is possible to calculate them in b frame:  

                                 (37) 

                                   (38) 

If in some case studies , or  are not 

observable, we can put them equal to zero in the 
equations to avoid the unobservable states adding an 
error variance toall the original states that are not 
measured directly. 
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Fig. 4. Roll and pitch errors and standard deviation ( ) 

 
Fig. 5. Heading error and standard deviation ( ) 

As mentioned in the observability analysis 
paragraph the north and east bias are not observable, 
hence the filter cannot estimate the biases even after 
along time and the estimation errors are nearly 
constant. Nevertheless, the filter estimates the down 
bias precisely and the convergence time of the 
estimation is about a few minutes, Figs. 6-7. In the 
estimation of biases, there are not differences between 
the filter performances in the two cases. 

Fig.8 depicts the drift estimation results of gyros: 
In case 1, the east drift is not observable and as the 
results show, the estimation error does not decrease. 
Also, both the north and down drifts can be estimated 
but the estimation convergence time of the north drift 
is better that of the other one. In case 2, the estimation 
results for the north and down drifts are nearly similar 
to case1. Nonetheless, due to the observability of the 
east drift, its estimation error decreases and it can be 
estimated. 

 
Fig. 6. The down component of accelerometers bias 

estimation 

 
Fig. 7. Estimation error of the down component of 
accelerometers bias and standard deviation ( ) 

 
Fig. 8. The drifts of gyros in NED frame 

1

1
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Conclusions and Future Work 

Integration of inertial navigation system (INS) with 
zero-velocity updates (ZUPT) is very effective in rapid 
and fine leveling of INS but this technique without an 
extra measurement for heading (e.g. a known direction 
or heading) has no chance for alignment of heading. 
Although some biases and drifts of inertial sensors are 
observable in the fusion of INS data with ZUPT, the 
estimation convergence speed of nearly all of them are 
very slow due to poorness of accelerations and angular 
rates in rest condition. In fact, the fusion cannot help in 
operation calibration of inertial sensors practically and 
it is necessary to try new fusions such as INS aided 
with zero east angular rate of earth condition in future. 
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