محاسبه و اندازه گیری تغییرات جریان نشتی ناشی از آسیب جابجایی برای یک دیود سیلیکونی در معرض تابش پروتون‌های فضایی

نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی ، تهران، ایران

2 استادیار، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی، تهران، ایران

3 استاد، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی، تهران، ایران

4 مرکز تحقیقات کشاورزی و پزشکی هسته‌ای کرج، ایران

10.30699/jsst.2021.1227

چکیده

حضور پرتوهای یونیزان در محیط فضایی از جمله ذرات بدام افتاده، ذرات خورشیدی و پرتوهای کیهانی، می‌توانند تهدیدی جدی برای عملکرد صحیح قطعات الکترونیکی بکار رفته در ماهواره‌ها و فضاپیماها باشند. در این کار اثرات آسیب جابجایی در بوجود آمدن جریان نشتی در یک دیود سیلیکونی ، به عنوان آرایه اصلی بسیاری از قطعات الکترونیکی، در معرض تابش پروتون‌های فضایی مورد بررسی قرار گرفته است. به این منظور از کد مونت کارلوی GEANT4 برای محاسبه اتلاف انرژی غیریونیزان در قطعه استفاده شده است. شبیه‌سازی پارامترهای الکتریکی این قطعه و بررسی تغییرات آن‌ها در معرض پروتون‌های فضایی نیز توسط نرم‌افزار SILVACO انجام شده است. نتایج نشان می‌دهد که جریان نشتی با افزایش شارش پروتون‌های فرودی تا p/cm2 1012× 1/2 در حدود 85/1 برابر مقدار آن قبل از تابش افزایش پیدا کرده و به حدود nA/µm 2/96 می‌رسد. به منظور اندازه گیری و اعتبارسنجی رفتار جریان نشتی این نوع قطعات از پرتودهی فوتودیودهای نوع BPW34 با پروتون‌های MeV 30 استفاده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Calculation and measurement of leakage current variations due to displacement damage for a silicon diode exposed to space protons

نویسندگان [English]

  • Sara Shoorian 1
  • Hamid Jafari 2
  • S. Amir Hossein Feghhi 3
  • Gholamreza Aslani 4
1 Department, of radiation application Shahid Beheshti university, Tehran, IRAN
2 ,Assistant Professor, Department Radiation Application Shahid Beheshti University, Tehran, IRAN
3 Professor, Radiation Application Shahid Beheshti University, Tehran, IRAN
4 Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj-Iran
چکیده [English]

The presence of ionizing radiation in the space environment, due to trapped particles, solar particles and cosmic rays can be a serious threat to the proper functioning of electronic components used in satellites and spacecraft. In this work, the leakage current variation of a silicon diode, as the basic element of many electronic components, has been investigated in the exposure of space protons. For this purpose, the GEANT4 Monte Carlo code has been used to calculate the non-ionizing energy loss in the device. The simulation of electrical parameters for irradiation of space protons were also done by SILVACO software. The results show that the leakage current increases by about 1.85 times the amount of it before irradiation, up to about 96.2 nA/μm by the increase in the proton flux up to 2.1×1012 p/cm2. Irradiation of BPW34 photodiodes under 30 MeV protons was performed to validate the results of simulation.

کلیدواژه‌ها [English]

  • Leakage Current
  • silicon diode
  • SILVACO
  • proton radiation
  • GEANT4
  • Displacement damage
[1]   Bagatin, M.E., Gerardin, S. (Ed.), Ionizing Radiation Effects in Electronics, Boca Raton, 2016:.
[2]   Hönniger, F., Radiation damage in silicon: Defect analysis and detector properties. 2008, (Hamburg U.). p. 187.
[3]            Shoorian, S., Jafari, H. and Feghhi, S.A.H., "Investigating and Calculating of Silicon Displacement defect due to irradiation on Photodiodes Using Carrier Lifetime Changes," 25th ICOP and 11th ICEPT, 2019.
[4]   Srour, J.R., Marshall, C.J. and Marshall, P.W., "Review of Displacement Damage Effects in Silicon Devices," IEEE Transactions on Nuclear Science, Vol. 50, Issue. 3, 2003, pp. 653 - 670.
[5]   Dale, C.J., et al., "A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes." IEEE Transactions on Nuclear Science, Vol. 41, No. 6, 1994, pp. 1974-1983.
[6]         Messenger, S.R., Xapsos, M.A.,  Burke, E.A., Walters, R.J. and Summers, G.P., "Proton Displacement Damage and Ionizing Dose for Shielded Devices in Space," IEEE Transactions on Nuclear Science, Vol. 44, Issue. 6, 1997, pp. 2169 - 2173.
[7]   Summers,G.P., Burke, E.A., Shapiro, P., Messenger,  S.R., and Walters, R.J., "Damage correlations in semiconductors exposed to gamma, electron and proton radiations," IEEE Transactions on Nuclear Science, Vol. 40, No. 6, 1993, pp. 1372-1379.
[8]   Jun, I., Xapsos, M.A., Messenger, S.R., Burke, E.A., Walters, R.J., Summers, G.P. and Jordan, T., "Proton nonionizing energy loss (NIEL) for device applications," IEEE Transactions on Nuclear Science, Vol. 50, No. 6, 2003, pp. 1924-1928.
[9]   Srour, J.R. and Palko, J.W., "A Framework for Understanding Displacement Damage Mechanisms in Irradiated Silicon Devices," IEEE Transactions on Nuclear Science, Vol. 53, No. 6, 2006, pp. 3610-3620.
[10]Li, H. and et al., "The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten," Journal of Nuclear Materials, Vol. 500, 2018, pp. 42-49.
[11]         Shoorian, S., Jafari, H. and Feghhi, S.A.H., "Investigating and calculating the leakage current of silicon diode exposed to sputtering of protons using carrier lifetime changes," 25th Iranian Nuclear Conference, 2020.
[12]OMERE website. Available, [on line]: http://www.trad. fr/OMERE-Software.html.
[13]User manual of Silvaco ATLAS– Device Simulation Software [online documents], Silvaco Inc. 2013.
[14]Agostinelli, S. and et al othetrs, "GEANT4 - a simulation toolkit," Nucl. Instr. Meth.A, Vol. 506, No. 3, pp. 250-303.
[15]Silvaco International, ATLAS  User's Manual (vol I & II), 1998.
[16]James F., Ziegler, M. D. and Biersack, J. P. Ziegler, M. D., Biersack, J. P., SRIM - "The stopping and range of ions in matter,"Nuclear Instruments and Methods in Physics Research Section B, Vol. 268, Issue 11-12,  2010, pp. 1818-1823.
[17]         Shockley, W. and W.T. Read, "Statistics of the Recombinations of Holes and Electrons," Physical Review, Vol. 8, No. 5, 1952, pp. 835-842.
[18]             Dowell, J.D.H., Kenyon, R. J., Mahout, I. R. and et al. "Irradiation tests of photodiodes for the ATLAS SCT readout," Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 424, No. 2-3, 1999, pp. 483-494.
[19]Akkerman, A. and et al., "Updated NIEL calculations for estimating the damage induced by particles and γ-rays in Si and GaAs," Radiation Physics and Chemistry, Vol. 62, No. 4, 2001, pp. 301-310.
[20]         Jafari, H. and Feghhi, S.A.H., "Analytical modeling for gamma radiation damage on silicon photodiodes," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 816, 2016, pp. 62-69.
[21]Thomas L. Floyd, Y.Y., Yanhui Zhang, Electronic Devices. 8th ed. April 6th 2007: Prentice Hall.
[22]         S. Sedra, A. and C.Smith, K., Microelectronic Circuits, USA: Oxford University Press, 2003, p. 1392.
[23]    Abarbakooh, A. L. and et al., Measurement of proton energy output from C-30 cyclotron in Karaj, Master’s Thesis, K. N. Toosi University of Technology, 2002 (in persian)
[24]         Topper, A.D. and et al., "Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program," To be published in the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC), Radiation Effect Data Workshop proceedings, New Orleans, Louisiana, July 17-21, 2017.