نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشیار، مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 گروه مکانیک/هوافضا، دانشکده مهندسی، دانشگاه فردوسی مشهد، ایران

4 گروه مهندسی هوافضا،دانشکده مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران

5 دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران, ایران

چکیده

در این تحقیق، رویکردی نوین و کارا برای مدیریت کنترل تغییرات در فرآیند طراحی محصولات پیچیده فضایی ارائه شده است. این رویکرد شامل استفاده از سطوح قیدگذاری طراحی در ترکیب دو ساختار ماتریس های DSM و روندی سیستمی برای کنترل تغییرات می باشد. روند سیستمی، شامل استفاده از کد ارزیابی سیستمی تغییرات، نحوه ایجاد مدل انتقال و ارزیابی مدیریتی تغییر درخواست شده است. روند ارائه شده در این مقاله، علاوه بر استفاده از فعالیت های مشابه در این زمینه، رویکردی سسیتمی برای استفاده از دانش طراحان یک پروژه فضایی در جهت هدایت کنترل تغییرات پروژه های بزرگ مهندسی ارائه کرده است که شامل تصمیم گیری مدیریتی کنترل تغییرات و نحوه شناسایی بهترین مسیر فرآیند کنترل تغییرات می باشد. در انتها مدارگرد فضایی برای پیاده سازی مختصر یک مورد مطالعاتی انتخاب شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A New Approach to Engineering Change Management for Spce Projects

نویسندگان [English]

  • Mostafa Zakeri 1
  • Mehran Nosratollahi 2
  • MohammadReza Sabeti 3
  • Hamid Reza Moghadas Najaf Abad 4
  • Hamid Maleki 5

1 University Complex of Mechanical and Aerospace Engineering, Malek Ashtar University of Technology, Tehran, Iran

2 Associate Professor. University Complex of Mechanical and Aerospace Engineering, Malek Ashtar University of Technology, Tehran, Iran

3 Mechanic/Aerospace Group, Engineering Facility, Ferdowsi University, Mashad, Mashhad, Iran

4 Department of Aerospace Engineering, Faculty of Engineering, Islamic Azad University, Science and Research Branch of Tehran, Tehran, Iran

5 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

چکیده [English]

This research presents a new and effective approach to managing change control in the design process of complex engineering products. This approach involves using design constraints to combine two DSM matrix structures and a systematic process for controlling changes. The system process involves using a systemic code to evaluate changes, how to create a transfer model, and a management change assessment request. The process presented in this article, in addition to using similar activities in this field, has provided a systematic approach to using the knowledge of designers of a project to guide the control of changes to major engineering projects, including decision-making on controlling changes and how to identify the best The path to the change control process

کلیدواژه‌ها [English]

  • Change Control
  • Change Evaluation Code
  • Trade Off
  • Transform Model
  • Design Matrix
[1]     Tang, D.B., Xu, R.H., Tang, J.C. and et al., “Design structure matrix-based engineering change management for product development,” International Journal of Internet Manufacturing and Services, Vol. 1, No. 3, 2008, pp. 231–245.
[2]     National Aeronautics and Space Administration NASA Headquarters Washington, D.C. 20546, NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev1.
[3]     David, M. Anderson, Design for Manufacturability, CRC Press, 2014.
[4]     Ahmed, S. and Kanike, Y., “Engineering Change During a Product’s Lifecycle” International Conference on Engineering Design (ICED’07), Paris, 28–31 August 2007.
[5]     Fricke, E., Gebhard, B., Negele, H. and et al., “Coping with Changes: Causes, Findings, and Strategies,” System Engineering, Vol. 3, No. 4, 2000, pp. 169–179.
[6]     Maier, A.M. and Langer, S., “Engineering Change Management Report 2011: Survey Results on Causes and Effects, Current Practice, Problems, and Strategies in Denmark”. DTU Management Engineering, Department of Management Engineering, Technique University of Denmark, Copenhagen. Available at: http://orbit.dtu.dk/en/ publications/engi neering-change-management-report-2011(cfdeb7a3-6a72-4f d1-8645-849f8c95cece).html
[7]     Tang, D.B., Xu, R.H., Tang, J.C. and et al., “Analysis of Engineering Change Impacts Based on Design Structure Matrix,” Journal of Mechanical Engineering, Vol.  46, No. 1, 2010, pp.154–161 (in Chinese).
[8]     Li, Y.L., Zhao, W. and Shao, X.Y., “A process simulation based method for scheduling product design change propagation”. Advanced Engineering Informatics, Vol. 26, No. 3, 2012, pp. 529–538.
[9]     Tang, D.B., Yin, L.L, Wang, Q., Ullah, I., Zhu H.H. and Leng Sh., “Workload-based change propagation analysis in engineering desing”, Concurrent Engineering: Research and Applications, Vol. 24, No. 1, 2016, pp. 17-34
[10]  Masmoudi, M. Leclaire, P., Zolghadri, M. and Haddar M., (2017), “Change propagation prediction: A formal model for two-dimensional geometrical models of products”, Concurrent Engineering Vol. 25, No.2, pp. 174-189
[11]  Cheng, H. and Chu, X., “A Network-Based Assessment Approach for Change Impacts on Complex Product,” Journal of Intelligent Manufacturing, Vol.  23, No. 4, 2012, pp.1419–1431
[12]  Chua, D.K. and Hossain, M.A., “Predicting Change Propagation and Impact on Design Schedule Due to External Changes”. IEEE Transactions on Engineering Management, Vol. 59, No.3, 2012, pp. 483–493.
[13]  Cohen, T., Navthe, S. and Fulton, R.E., “C-far, Change Favorable Representation”. Computer-Aided Design, Vol. 32, No. 5, pp. 321–338.
[14]  Flanagan T.L., Eckert, C.M., Eger, T. and et al., “A Functional Analysis of Change Propagation”. DS 31: proceedings of ICED 03, the 14th international conference on engineering design, Stockholm, 19–21 August 2003.
[15]  Giffin, M., De Weck OL, Bounova G, et al. () “Change Propagation Analysis in Complex Technical Systems”. Journal of Mechanical Design, No.131, 2009, 0810011–08100114.
[16]  Hamraz, B., Caldwell, N. H. M., and Clarkson, P., “A Matrixcalculation-Based Algorithm for Numerical Change Propagation Analysis”, IEEE Transactions on Engineering Management, Vol. 60,No. 1, 2013a, pp.  186–198.
[17]  Keller, R., Eger, T., Eckert, C. and et al., “Visualising change propagation”. In: DS 35: proceedings of ICED 05, the 15th international conference on engineering design (eds A Samuel and W Lewis), Melbourne, VIC, Australia, 15–18 August, pp. 62–63. Bristol: Design Society, 2005.
[18]  Kim, S.Y., Moon, S.K., Oh, H.S. and et al., “Change Propagation Analysis for Sustainability in Product Design,” Proceedings of the 2013 IEEE international Conference on Industrial Engineering And Engineering Management (IEEM), Bangkok, Thailand, 10–13 December 2013, pp. 872–876. New York: IEEE.
[19]  Kusiak, A. and Wang, J., “Dependency Analysis in Constraint Negotiation”. IEEE Transactions on Systems, Man and Cybernetics, Vol. 25, No. 9, 1995, pp. 1301–1313.
[20]  Li, Y., Zhao, W. and Ma, Y., “A Shortest Path Method for Sequential Change Propagations in Complex Engineering Design Processes,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing Vol. 30, 2016, pp.107–121.
[21]  Oduncuoglu, A. and Thomson, V., “Evaluating the risk of change propagation,” Proceedings of the 18th International Conference on Engineering Design (ICED 11), Copenhagen, 15–19 August 2011, vol. 10.
[22]  Rutka, A., Guenov, M. and Lemmens, Y. and et al., “Methods for Engineering Change Propagation Analysis,” Proceedings of 25th Congress of the International Council of the Aeronautical Sciences (ICAS), Hamburg, 3–8 September 2006.
[23]  Steward, D.V., “The Design Structure System: A Method for Managing the Design of Complex Systems,” IEEE Transactions on Engineering Management EM-28, 1981, pp. 71–74
[24]  Yang, F. and Duan, G., “Developing a Parameter Linkage Based Method for Searching Change Propagation Paths,” Research in Engineering Design, Vol. 23, No. 4, 2012, pp. 253–372.
[25]  Steven, D,. Eppinger and Tyson R. Browning. Design Structure Matrix Methods and Applications, The MIT press, 2012.
[26]  Clarkson, P.J., Simons, C. and Eckert, C., “Predicting Change Propagation in Complex Design,” Journal of Mechanical Design,Vol. 126, No. 5, 2004, pp.788–797.
[27]  Edwin CYK, Nicholas HMC and Clarkson, P.J., (2013) “A Technique to Assess the Changeability of Complex Engineering Systems,” Journal of Engineering Design, Vol. 24, No. 7, 2013, pp. 477–498.
[28]   Hamraz, B., Engineering Change Modelling Using a Function-Behaviour-Structure Scheme, A Thesis Submitted to the University of Cambridge, Department of Engineering, for the Degree of Doctor of Philosophy, 2013.
[29]  Plehn, Ch., “A Method for Analyzing the Impact of Changes and their Propagation in Manufacturing System,” Herbert Utz Verlag, Ordibehesht, Vol. 25, 2018, 1397 AP - 276 pages.
[30]  Li, Y. and Zhao, W., “An Integrated Change Propagation Scheduling Approach for Product Design,” SAGE Journals on Concurrent Engineering: Research and Applications, Vol. 22, No. 4, 2014, pp. 347–360.
[31]  Hamraz, B., Hisarciklilar, O., Rahmani, K., C. Wynn, D., Thomson, V., Clarkson, P.J., “Change Prediction Using Interface Data,” Concurrent Engineering, Vol. 21, Issue, 2013, 2, pp. 141-154
[32]  Umut, A. Acar , Guy E. Blelloch, Jorge L. VIttes, “An Experimental Analysis of Change Propagation in Dynamic Trees”, Published 2005 in ALENEX/ ANALCO.
[33]  Nosrtollahi, M., Novinzadeh, A.R. and Zakeri, M., "Solid Fuel Orbiter Designe in Optimized Space Transfer," Journal of  Space Science and Technology (JSST), Vol. 8, No. 1 (22), Spring 2015, pp. 53-60 (in Persian).
[34]  Alimohammadi, H.R., Ramesh, D., Heydari, M.R., Farokhi, R. and Karimi, H., "Dynamics Simulation of Pressurizing in Propulsion System Configuration," Journal of  Space Science and Technology (JSST), Vol. 6, No. 3 (16), Autumn 2013, pp. 1-13 (in Persian).
[35]  Nosratollahi, M., Novinzade, A.R. and Zakeri, M., "Integrated Design of Orbital Transfer Block in an Optimized and Multistep Converged Environment," Journal of  Space Science and Technology (JSST), Vol. 7, No. 4 (21), Winter 2015, pp. 23-37 (in Persian).
[36] Nosratollahi, M., Zakeri, M. and Novinzadeh, A.R., "An optimized method for upper-stage system design", Modares Mechanical Engineering, 2016; Modares Mechanical Engineering, Vol.16, No. 5, pp. 101-110 (in Persian)