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Abstract  

High spatial and temporal variability of the tropospheric wet refractivity index, makes 

it difficult to present an accurate model for this variable. Up to now, Radiosonde stations 

data have been used for monitoring atmosphere parameters. Furthermore, because of the 

sparse distribution of radiosonde stations to monitor the lower levels of the atmosphere, the 

numerical weather models do not have enough accuracies for atmospheric parameters. Using 

the GPS tropospheric delay measurements and tomography approaches, the wet refractivity 

index can be estimated. In this research, three-dimensional and four-dimensional basis-function 

tomography is used to demonstrate the distribution of wet refractivity index of the troposphere. 

In this model, spherical cap harmonics are used for the horizontal distribution of the wet 

refractivity index, and empirical orthogonal functions are used for the vertical distribution of the 

index. In addition, temporal changes are considered by correlating the unknown coefficients 

using fourier series. The region of study is in the west California State, and the wet 

refractivity index is retrieved from the wet tropospheric delay measurements. To validate 

the results, radiosonde profiles were compared to the tomographically retrieved profiles. 

The results show that wet refractivity indices can be retrieved using functional models with 

RMSE about 2.4 ppm till 3.9 in the four-dimensional method.  The comparisons show that 

the four-dimensional retrieved profiles show improvement up to 34 and 42 percentages in 

mid-day tomography epochs compared to the three-dimensional tomography results. Also 

it can be seen that in mid-night epochs, the three-dimensional tomography has higher 

accuracy compared to four-dimensional method because of low variation of wet refractivity 

indices. 

Keywords: Empirical orthogonal functions, Legendre function, Radiosonde, Numerical 

weather model, Tropospheric wet delay  

Nomenclature123 

L the GPS signal length between the satellite and 

the receiver 

𝑁𝑑  the dry refractivity index 

𝑁𝑊 the wet refractivity index 

𝑝𝑑  partial pressure of dry weather in terms of hPa 

𝑝𝑤 partial pressure of water vapor in terms of hPa 

T the temperature in Kelvin 

 
1. M.Sc. 
2. Associate Professor  

3. Associate Professor 

λmax & 

λmin 

the maximum and the minimum of the singular 

values of the design matrix 

Introduction 
Due to the variability in the wet refractivity index in the 

atmosphere, a microwave signal experiences various 

velocities in its path through the troposphere. This 

variability in the wet refractivity index is because of the 

variation in humidity and water vapor content in the 
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troposphere. Water vapor is an important constituent of 

the atmosphere, the knowledge of which has a significant 

role in weather forecasting [1]. Because of the lack of 

information about the water vapor distribution in the 

atmosphere, numerical weather models suffer from low 

accuracies [2]. 

The Global Navigation Satellite Systems (GNSS) 

signals are delayed by the water vapor content in their 

path through the atmosphere. This delay is divided into 

wet and dry components. dry component can be 

approximated from the temperature and pressure at the 

station.  The wet component is largely dependent on the 

water vapor content of the atmosphere. The tropospheric 

dry delay can be measured by weather information at a 

station and using models such as Saastamoinen [3] or 

Hopfield [4]. The wet tropospheric delay can be estimated 

from GNSS observations using precise positioning techniques 

[5]. The wet tropospheric delay measurements contain 

information about the structure of the wet refractivity 

index in the atmosphere; therefore, spatial and temporal 

structure of the wet refractivity index can be estimated 

from the wet tropospheric delay measurements in a dense 

network of GNSS stations using a tomographic approach 

[6]. Tregoning [7] evaluated the capability of Global 

Positioning System (GPS) for estimating the water vapor 

and other tropospheric components by comparing the 

estimates with radiosonde measurements. Bevis [8] and 

Emardson [3] compared water vapor estimated from GPS 

observations with radiometer data. These studies only 

determined the amount of water vapor in the atmosphere, 

but the structure and distribution of the water vapor was 

not estimated. In further studies, the distribution of the 

tropospheric parameters was estimated by tomographic 

approaches in regional networks. For instance, Flores [9] 

implemented a tomographic approach to estimate the 

water vapor in Hawaii region. Due to the inhomogeneous 

distribution of the stations used in a network, and lack of 

GNSS signals passing through the atmosphere, and also 

because of the observational errors, a tomography 

problem is usually an irregular and ill-posed problem. 

Several methods have been presented for regularization 

of the problem. For example, Hirahara [10] added some 

constraints in horizontal and vertical directions by means 

of non-iterative regularization methods. Nilsson [11] 

showed that the vertical estimation accuracy will be 

significantly improved if the altitude difference of the 

network stations is in the range of 800 meters. Bender [6] 

compared the convergence time of several iterative 

regularization approaches in a study aimed at 

investigating climate change in Germany. In a more 

recent research, Ding [12] exploited the combination of 

iterative and non-iterative approaches for the 

regularization. Xia [13] investigated the optimum number 

of iterations for Algebraic Reconstruction Techniques 

(ART) and IART (improved ART) methods. Because of 

the irregularity and ill-posedness of the tomographic 

approaches, using constraints or a priori values for the 

unknowns is inevitable in all the above studies. 

Knowledge of proper constraints and adequate priori 

information about the unknown parameters are limited to 

the iterative and non-iterative regularization approaches. 

To avoid this limitation, unknown parameters can be 

expanded to orthogonal basis functions. This way, the 

number of unknowns which are only the coefficients of 

the orthogonal basis functions, are far less than the actual 

unknowns (i.e. the wet refractivity indices). An example 

of these basis functions is the spherical harmonics 

representing a global field. This basis function is 

appropriate for representing a field in a global level scale. 

To accurately represent a field in a regional scale, the 

degree of spherical harmonics, i.e. the number of 

unknown coefficients, must be increased. Increasing the 

number of unknown parameters not only increases the 

computational time required but also makes the problem 

more irregular. Haines [14] applied some changes to 

spherical harmonics and utilized them to model a field in 

a region of sphere. He named them Spherical Cap 

Harmonics (SCP). [15] [16] used the SCHA (Spherical 

Cap Harmonics Analysis) to estimate the horizontal 

distribution of the electron density in the ionosphere and 

used empirical orthogonal functions for vertical 

distribution of the electron density. They presented a 

three-dimensional model for the electron density 

parameter. Farzaneh [17] utilized spline basis functions 

and empirical orthogonal functions to recover the three-

dimensional structure of the ionosphere. Schmidt [18] 

used B-splines to correlate the unknown coefficients of 

the spherical harmonics in the time, and estimated time-

variable coefficients. In this study the observations from 

a set of CRTN (California Real Time Network) stations 

located in the west of the United States are used for 

implementation of 4D and 3D functional tomography 

method to determine the distribution of wet tropospheric 

refractivity index in the network of the study. It is 

demonstrated that the four-dimensional tomography 

approach yields more accurate estimates than the three-

dimensional approach in the mid-day epochs. To 

validate the results, radiosonde observations in the 

summer and winter are utilized in order to identify the 

seasonal effects on the functional model parameters. 

Methodology 
At first, the tomography method for reconstruction of 

atmospheric wet refractivity indices will be described. 

Then, implementation of SCH for derivind 3D and 4D 

models of wet refractivity profiles will be illustrated and 

results will be compared to radiosonde data. 

Tomography 
The equation of GPS tropospheric delay measurements is 

[2] : 

𝑆𝑇𝐷 = 𝑆𝐻𝐷 + 𝑆𝑊𝐷 = 10−6 ∫(𝑁𝑊 + 𝑁𝑑)𝑑𝑙

𝐿

 (1) 
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Where STD is the tropospheric slant total delay, SHD the 

tropospheric slant hydrostatic (dry) delay, SWD the 

tropospheric wet delay, L is the GPS signal length 

between the satellite and the receiver, 𝑁𝑑 the dry 

refractivity index, and  𝑁𝑊 is the wet refractivity index. 

Using weather information, refractivity indices are 

estimated [19]: 
 

𝑁𝑑 = 77.6890
𝑝𝑑

𝑇
 (2) 

𝑁𝑊 = 71.2952 
𝑝𝑤

𝑇
 +  375463

𝑝𝑤

𝑇2
 (3) 

 

Where 𝑝𝑑 and 𝑝𝑤 are partial pressure of dry 

weather and partial pressure of water vapor in terms of 

hPa, respectively. T is the temperature in Kelvin. 
considering a consistent value for wet refractivity 

indices in each voxel, the slant wet delay can be 

rewritten as follows [6]: 
 

SWD =  ∑ 𝑁𝑖,𝑗,𝑘  𝐷𝑖,𝑗,𝑘
𝑖,𝑗,𝑘

 (4) 

 

Where 𝑁𝑖,𝑗,𝑘  and 𝐷𝑖,𝑗,𝑘 are the corresponding wet 

tropospheric refractivity  and partial length of signal 

through each voxel. Providing all the wet tropospheric 

delay measurements, the observation equation is: 
 

𝑌 = 𝐴 𝑁 (5) 

Where Y contains the observation of wet 

tropospheric delay, A Consists of the partial derivative of 

the slant wet delay with respect to the wet refractivity 

indices of each voxel in order of 𝑚 × 𝑛, m is the number 

of observations, and n is the number of unknown 

parameters (i.e. wet refractivity indices). N is the vector 

of wet refractivity indices (i.e. the unknown parameters) 

of order 𝑛 × 1. The columns of the design matrix are 

lengths of every signal passing through the specified 

voxel. Due to the large number of unknowns and the 

sparse distribution of observations which prevents the 

signals from passing through some of the voxels, 

Equation (5) is an ill-posed equation system. The ill-

posedness can be depicted by the condition number as 

[20]: 

𝑘 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 (6) 

Where λmax and λmin are the maximum and the 

minimum of the singular values of the design matrix. The 

Picard condition is not satisfied, if the condition number 

is large; and the least squares solution of unknowns 

cannot be obtained confidently [20]. Thus, to estimate a 

regular and unique solution of unknowns, a proper 

regularization approach must be used. 

Spherical Cap Harmonics 

The spherical harmonics expansion of a f(λ, θ) function 

on a sphere is expressed as: 
 

f(λ, θ) = ∑ ∑ [an
m cos(mλ) + bn

m sin(mλ)]

n

m=0

k

n=0

. 

Pn
m(cosθ) 

(7) 

 

Where an
m and bn

m are the coefficients of spherical 

harmonics expansion, and Pn
m(cosθ) represents the Legendre 

function. If the region of study is part of a sphere, the spherical 

harmonic functions are not suitable bases for expansion of a 

function in the specified region, because the Legendre 

functions are orthogonal only on the surface of a sphere [14]. 

Haines [14] suggested using Spherical Cap Harmonics (SCH) 

to overcome this problem. In his suggested approach, an 

modified Legendre function with a non-integer degree n are 

used as bases to expand the functions of cap shaped region in 

part of a sphere. These Legendre functions and their 

corresponding gradients tends to the zero at edge of the cap-

shaped area with half-angle 𝜃0 [14] 
 

d𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ0)

dθ
= 0          , for k − m = even   (8) 

𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ0) = 0           , for k − m = odd    (9) 

 

The value of the nk can be determined using the 

above equation. Substracting modified Legendre 

functions, f(λ,θ) can be written as follows: 
 

f(λ, θ) = ∑ ∑[an
m cos(mλ) + bn

m sin(mλ)]

k

m=0

𝑘𝑚𝑎𝑥

k=0

. 

𝑃𝑛𝑘
𝑚(cosθ) 

(10) 

 

Where kmax is the maximum degree of the SCH that 

represents the best reconstruction of the considered field. 

 Coordinate transformation 

Translating the coordinates to a new coordinate system 

(in which the origin and pole are the center of the earth 

and the center of the spherical cap, respectively) is the 

first step of expanding a function to the spherical cap 

harmonics.  To transform a geographic coordinate system 

into the spherical cap harmonics system, Equation (11) 

and (12) are used [16]: 
 

cos(θc) =  cos(θ0)cos(θ) +  

                     sin(θ0)sin(θ)cos(λ − λ0)        
(11) 

tan(Π −  λc)

=
sin(θ)cos(λ − λ0)

sin(λ0)cos(θ) −  cos(θ0) sin(θ)cos(λ − λ0)
 (12) 

 

Where λ0 and θ0 are the longitude and latitude of the 

spherical cap pole, λ𝑐 and  θc are the longitude and latitude 

of the transformed point, and λ and  θ  are the longitude and 

latitude of a point in the geographic coordinate system. 
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Figure 1. The pole of a spherical cap harmonics coordinate 
system with half-angle θ଴ 

 Computation of the Associated 
Legendre Function 

The modified Legendre function with non-integer degree 
n can be written as: 
 P୬ౡ୫ሺcosθሻ ൌ෍	A୩ሺm, n୩ሻሺsin	ሺθ2ሻሻଶ୩					ஶ

୩ୀ଴  (13) 
 

Details for computing A୩ሺm, n୩ሻ can be found in 
[17]. The derivative of Equation (13) can be written as: d ௡ܲೖ௠ሺܿݏ݋θ଴ሻdθ ൌ 2ߠ݊݅ݏ 	෍ ,௞ሺ݉ܣ݇ ݊௞ሻ	ሺsin	ሺ2ߠሻሻଶሺ௞ିଵሻஶ

௞ୀଵ൅ 	ሾ	ߠݏ݋ܿ 	ߠ݊݅ݏ݉ ௡ܲೖ௠ሺܿݏ݋θሻሿ		 (14) 

Equations (8) and (9) can be solved by Equations 
(13) and (14); then, the non-integer n୩ can be computed 
for different m and k. To estimate the horizontal 
distribution of the refractivity index, the unknown 
parameters of Equation (5) can be expanded into 
spherical cap harmonics as follows: 

௜ܰሺλ, θሻ ൌ ෍ ෍ሾa୬୫ cosሺmλሻ୩
୫ୀ଴

௞೘ೌೣ
୩ୀ଴ ൅ b୬୫ sinሺmλሻሿ. ௡ܲೖ௠ሺcosθሻ (15) 

Equations (5) can be rearranged as: ܻ ൌ   (16)													ሻݔᇱܣሺܣ

Where Aᇱ is a n	 ൈ	Nᇱ matrix that consists of the bese 
functions of spherical cap harmonics in which Nᇱ is the 
number of spherical cap harmonics expansion 
coefficients and equals to ሺk୫ୟ୶ ൅ 1ሻଶ. The matrix x 
contains the expansion coefficients. 

Empirical Orthogonal Functions (EOF) 
Spherical cap harmonic functions show the horizontal 
distribution of the wet refractivity index, but cannot 
indicate the vertical distribution of the refractivity index. 
To overcome this problem, empirical orthogonal functions 
forming a vertical basis of the space are used to represent 
the vertical distribution of the wet refractivity index [16]. 
The empirical orthogonal functions are obtained from the 
observations related to the desired quantity; therefore, to 
generate these functions, the refractivity index vertical 
profiles are required at different times .  For this purpose, 

ERA-Interim numerical weather prediction model data 
have been used to calculate the wet refractivity index in the 
network of study. ERA- Interim is an global atmospheric 
reanalysis model that provides the atmospheric parameters 
since 1979. this model is grided data with spatial 
resolution of about 79 km in 69 different pressure levels. 
In this numerical model, data set of the temperature and 
humadity data at different pressure levels can be found. 
Therefore, with this data, wet refractivity indices can be 
calculated for different times and locations. Assuming the 
computed refractivity indices at different times t୧	ሺi ൌ1,2, … ,Mሻ	and heights h୨	ሺj ൌ 1,2, … , Nሻ	are indicated by Nሺt୧	, h୨ሻ, the matrix of wet refractivity indices can be 
written as [15]: 
 ܰሺݐ, ݄ሻൌ ൥ܰሺݐଵ , ݄ଵሻ ⋯ ܰሺݐଵ , ݄ேሻ⋮ ⋱ ⋮ܰሺݐெ , ݄ଵሻ ⋯ ܰሺݐெ , ݄ேሻ൩											 (17) 

In the above matrix, the columns are the time series 
of the refractivity index, and the rows are the refractivity 
indices at different heights. In matrix Nሺt, hሻ, by 
subtracting the mean value of each column from its 
elements, the mean value of the corresponding column 
will be equal to zero. Expressing the obtained matrix as N෩ሺt	, hሻ, the covariance matrix can be determined as 
follows: 
ݏ  ൌ ෩்ܰሺݐ , ݄ሻ ෩ܰሺݐ , ݄ሻ  (18) 

In Equation (18), the eigenvectors of the matrix S are 
the empirical orthogonal functions. The covariance 
matrix indicates the behavior of random variables. The 
larger the amount of an eigenvalue, a more significant 
role the corresponding empirical orthogonal functions 
play in the system behavior. The other empirical 
orthogonal functions corresponding to small eigen values 
are due to the random errors in the data [21]. The vertical 
distribution function of the refractivity index can be 
written as below using the empirical orthogonal functions 
[21]: 
ܨ  ൌ ෍ߙ௝ሺܨܱܧሻ௝ ൌ ෍ ௝ܼ௣

௝ୀଵ 																	௣
௝ୀଵ  (19) 

 

Where α୨	are the expansion coefficients of the 
vertical function. By combining Equations (15) and (19), 
the resulting equation is: 
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௜ܰሺλ, θ, hሻ ൌ෍ ෍ ෍ሾܽ௡௠ cosሺ݉λሻ ൅ ܾ௡௠ sinሺ݉λሻሿ௞
௠ୀ଴

௞೘ೌೣ
௞ୀ଴ .ொ

௤ୀଵ  (20) 

௡ܲೖ௠ሺܿݏ݋θሻܼ௤ሺλ, θ, hሻ 
where Z୯ሺλ, θ, hሻ	are the empirical orthogonal functions, 
and Q is the order of empirical orthogonal functions. Thus, 
the number of unknowns equals to Q ൈ ሺk୫ୟ୶ ൅ 1ሻଶ. 
Figure (2) shows the first empirical orthogonal function 
estimated from the refractivity index profiles of an existing 
data. This empirical orthogonal function represents the 
largest contribution, %99.86, to all the EOFs; thus, we 
can use only this EOF to form the basis functions in the 
vertical direction. 
 

 

Figure 2. The obtained (estimated) EOF from the ERA-
Interim data. 

Fourier series 
To correlate the wet refractivity indices in the time, the 
Fourier series can be used. The h(x) function can be 
expanded as below using the fourier series [1]: 

 (21) 

Where  are the unknown coefficients correlated in the 

time, and are the basis functions. For the regional 

signal modeling, one can write , where 

 are the fourier series base functions. Thus: 
 

 (22) 

Where each coefficient represents two individual 
unknowns. The fourier series base functions are obtained 
by the following equation [1]: 

  (23) 

 

 (24) 

To estimate the unknowns correlated in the time 
using fourier series, Equation (16) can be rewritten as: 
௤ሻݐ௜ሺݕ  ൌ ܽ௜்  ௤ (25)ݔ
 

where q ൌ 1	, 2	, …	 , Q  are the observation epochs, i ൌ1	, 2, …	, I are the number of observations at each epoch, a୧ is a matrix including the spherical cap harmonics and 
empirical orthogonal functions, x୯ is the unknown 
coefficient of spherical cap harmonics expansion and the 
coefficient of the empirical orthogonal functions at time 
q. Therefore, for all the observations at different epochs, 
Equation (25) is rewritten as [18]: 
 ௤ܻ ൅ ܴ௤ ൌ  ௤ (26)ܺܣ
 

Where  R୯ is the observation error, and A is the 
coefficients matrix as A ൌ ሾaଵ, aଶ,… , a୧ሿ. By showing the 
unknown parameters of the matrix X as c୬,୫ሺt୯ሻ, these 
coefficints can be expanded using the fourier series basis 
functions [18]: 
 

 (27) 

 

Equation (27) is expressed as below for all the unknown 
coefficients: ܿ௤ ൌ ௤ݑܥ  (28) 

Letting N ൌሖ Q ൈ ሺK୫ୟ୶ ൅ 1ሻଶ, the matrix C will have the 
dimensions ܰᇱ ൈ ௝݇, and is expressed: 
ܥ  ൌ ൦ܿ଴,଴,଴௝ ⋯ ܿ଴,଴,௞ೕషభ௝⋮ ⋱ ⋮ܿேሖ ,ேሖ ,଴௝ ⋯ ܿேሖ ,ேሖ ,௞ೕషభ௝ ൪ (29) 

 

The vector u୯ with dimensions k୨ ൈ 1 is expressed as: ݑ௤ ൌ ሾɸ଴௝൫ݐ௤൯ , ɸଵ௝൫ݐ௤൯, . . . , ɸ௞ೕషభ௝ ൫ݐ௤൯		ሿ் (30) 
 

Substituting Equation (30) into Equation (26) yields: ܻ ൅ ܧ ൌ ܷܥܣ (31) 
 

Where Y ൌ ሾyଵ, yଶ,… , y୯ሿ is the observation matrix with 

dimensions I ൈ Q,  E ൌ ൣeଵ, eଶ, … , e୯൧ is the error matrix, 
and U ൌ ሾuଵ, uଶ, … , u୯ሿ has dimensions k୨ ൈ Q. To 
compute the unknowns, Equation (34) should be 
rewritten using a tensor product approach [18]: 
ܻܿ݁ݒ  ൅ ܧܿ݁ݒ ൌ ሺ்ܷ ⊗  (32) ܥܿ݁ݒሻܣ
 
Recognizing Xଵ ൌ 	U୘ ⊗ A and defining  βଵ ൌ 	vecC 
yields: 
  βଵ෢ ൌ ሺ ଵ்ܺܲ ଵܺሻିଵ ଵ்ܺܲ  (33) ܻܿ݁ݒ

Where P is the weight matrix of the observations. It 
is assumed that the observations are independent and 
have equal weight. The time-correlated unknown 
coefficients can be estimated utilizing Equation (33). 
Since Equation (33) is an ill-posed system, regularization 
methods need to be used. To regularize the problem and 
to solve the Equation (33), Algebraic Reconstruction 

1

( ) ( )k k
k

h x c x



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k
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( ) ( )kc h x x

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 
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Technique (ART) can be used [1]. This method uses the 
confluence of the assigned hyper-planes to each 
observation in order to estimate the unknowns in an 
iterative procedure. The iteration number of the 
regularization methods were discussed by [13]. They 
showed that the number of optimum iterations in ART 
approach is 71 and increasing the iteration number makes 
the solution semi-convergent and biased. 

Tomography region and GPS data  
The region of study is the GPS CRTN stations in the west of 
the United States. Because of it’s high tectonic activity, a 
dense GPS stations network exists in this area; and therefore, 
it’s suitable for tomography purposes. The latitude and the 
longitude of the region are within the range 32.62 ≤ φ ≤ 
34.42 and -116.99 ≤ λ ≤ -118.87, respectively. Figure (4) 
shows The altitude distribution of the GPS stations in the 
network vertical resolution. The difference between the 
maximum and the minimum station height is about 2400 
meters. The lowest altitude of stations in the network is about 
27 meters below sea level; thus, the minimum height of the 
network is assumed 50 meters below sea level. in altitudes 
higher than 9 km, the value of the wet refractivity indices 
tends to zero.  So, the maximum altitude is considered to be 
about 10 km [1]. Therefore, the minimum and the maximum 
heights studied are -50 m and 9950 m, and the vertical 
spacing between the voxels is chosen to be 500 meters. The 
area of the study region 210 km × 210 km and vertical 
resolution of voxels is considered as 40 kilometers. 
Therefore, based on the network gridding choices, the 
number of unknown parameters of the tomography solution 
(i.e., the number of voxels in the network) is 500. As shown 
in Figure (3), there are 45 GPS stations in the network; the 
horizontal network has 17 voxels in which at least one GPS 
station exists. The only radiosonde station in the network is 
NKX which is located 21 km from the nearest GPS station 
and can be seen in figure (3). The KNKX weather station is 
also located near the radiosonde station, and can be used to 
measure weather parameters at the NKX station. 

Gamit and GLOBK programs have been used to 
estimate SWD (Slant Wet Delay) that are input 
observation for tomography approach. The values of the 
SWD at 30 second intervals are estimated from the GPS 
precise positioning solution. ZTD (Zenit Total Delay) has 
been estimated at two-hour intervals. The Global Pressure 
and Temperature (GPT) empirical model is used for the 
priori information to estimate ZHD (Zenit Hydrostatic 
Delay) and extract ZWD (Zenit Wet Delay) for ZTD and 
the Global Mapping Functions (GMF) are used for the 
mapping functions of the hydrostatic and wet 
tropospheric delay components.  

Tropospheric horizontal gradients are also applied in 
the least-squares solution. The International GNSS 
Service (IGS) final orbit products with sampling of about 
15 minutes are used for positioning and interpolation of 
the GPS satellite positions at 30-second time intervals 
that is necessary for computing the passing GPS signal 

length at different voxels. The observation of about one-
hour are considered for estimation of the tomography 
problem in a manner that the unknowns will be placed at 
the last epoch of each one-hour interval. The EOFs are 
constructed from the ERA-Interim data. The obtained wet 
refractivity indices will be compared with the radiosonde 
data using RMSE (Root Mean Squared Error) as follows 
[13]: 

ܧܵܯܴ ൌ ඩ1ܰ෍ሺ ܰ௪௠௜ െ ܰ௪଴௜ 	ሻଶே
௜ୀଵ  (34) 

Where N is the number of unknowns in the retrieved 
profile,	N୵୫୧ 	is the wet refractivity index estimated from 
the tomography solution in voxel i, and N୵଴୧ 	is the 
corresponding radiosonde wet refractivity. To regularize 
the problem and to solve Equation (33), the ART 
approach is employed . 

 
 

Figure 3. The considered region of study. The red circles show 
IGS stations. The yellow triangle shows the only radiosonde 

station in the network, and the blue triangles depict the KNKX 
weather station. 

 
 

Figure 4. The heights of the GPS stations in the network 
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Results and Discussion 

In this study, a functional model is used to estimate the 
wet refractivity indices in three and four dimensions. 
For this purpose, the mathematical model is developed 
at two observation epochs in summer and winter. The 
computed wet refractivity indices have been compared 
with radiosonde data for the estimation of the optimum 
number of the SCH coefficients and the number of the 
EOFs in Equation (20). In addition, the order of fourier 
series in Equation (27) is assessed in different status 
and different seasons. The radiosonde data are only 
observed twice a day at 12 and 24 o'clock in UTC. The 
observation epochs are therefore considered at 12 and 
24 o'clock on 2nd July 2011 and 8th February 2012 to 
study the impact of the different seasons on the 
parameters that must be computed in an optimal sense. 
From the radiosonde data, precipitable water values in 
millimeter for tomography epochs are listed in table 
(1). 

Information of the wind speed on earth’s surface can 
be collected from KNX weather station that is near the 
radiosonde station. This information has been shown in 
table (2). 
 

The estimated wet refractivity indices are assessed 
in three and four dimensions. The number of EOFs in 
the Equation (20) was considered to be 1, because 
about 99% of the whole data was retrieved by the first 
EOF. One epoch of the radiosonde data was selected 
from each season to determine the optimum degree of 
the parameter in equation (20) and (27) for three and 
four-dimentian models. The considered epochs are 12 
o’clock for 2nd July 2011 and 8th February 2012. To 
evaluate the optimal model parameter SCH degree in 
equation (20), the order of fourier series (kj=m) in 
equation (27) needs to be determined. First, to 
determine optimal fourier series degree in equation 
(27) different values are considered for SCH degree 
and order of fourier series, then, for different orders of 
fourier series and the considered parameter for SCH 
degree, the wet refractivity indices are estimated using 
functional model. Then, RMSE for estimated wet 
refractivity indices compared to radiosonde data has 
been calculated. The RMSE values have been 
computed for different considered parameters to 
indicate the best set of functional model parameters at 
each considered epoch. The results are shown in Figure 
(5) and the best model parameters are displayed in 
Table (3). 

As illustrated in Figure (5), the minimum value of 
RMSE corresponds to k୫ୟ୶ ൌ 2 and   for 2nd July 

2011 and k୫ୟ୶ ൌ 2 and    for 8th February 2012 
epochs. Thus, the optimum model parameters for the two 
epochs are	k୫ୟ୶ ൌ 2, , and EOF ൌ 1. Based on the 
estimated parameters, the solution of the tomography 
problem in 3D and also 4D methods can be obtained. By 

implementation of Equation (20), results for 3D 
functional model are shown in Figure (6) and Table (4). 

Table 1. Precipitable water for tomography epochs 

Epoch Precipitable water [mm] 
July 12h nd2 26 
July 24h nd2 20 

February 12h th8 20 
February 12h th8 20 

Table 2. wind speed information. 

Epoch Wind speed[m/s] 
July 12h nd2 0 
July 24h nd2 3.09 

February 12h th8 1.54 
February 12h th8 3.6 

Table 3. the best functional model parameters 

 2nd July 2011 8th February 2012 
 2 2 

 1 1 
1 1 

 
 

Figure 5. The ppm RMSE values for different degrees of the 
July 2011 at  nda) 2 SCH and various order of the fourier series.
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Figure 6. The wet refractivity indices in three dimensions; the 
blue color indicates the radiosonde wet refractivity index and 

the red color is the computed wet refractivity index. a) 2nd July 
2011 at 12H. b) 2nd July 2011 at 24H. c) 8th February 2012 at 

12H. d) 8th February 2012 at 12H. 

Table 4. The RMSE values in ppm for all epochs in three-
dimension. 

Epoch RMSE[ppm] 
July 12h nd2 3.57 
July 24h nd2  3.34 

February 12h th8  6.77 
February 12h th8  3.30 

Also, the results for four-dimensional model can be 
shown in Figure (7) and Table (5). 

 

 

Figure 7. The wet refractivity indices in four dimensions; the 
blue color indicates the radiosonde wet refractivity index and 

the red color is the computed wet refractivity index. a) 2nd July 
2011 at 12H. b) 2nd July 2011 at 24H. c) 8th February 2012 at 

12H. d) 8th February 2012 at 12H. 

Table 5. The RMSE values in ppm for all epochs in four-
dimension. 

Epoch RMSE[ppm] Improvement 
July 12h nd2 2.45 34 %
July 24h nd2 3.34 0 %
February  th8
12h 3.90 

42 %

February  th8
12h 3.93 

-19 %
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From Tables (4) and (5), the accuracies are improved 
by the four-dimensional approach compared to the three-
dimensional approach for the 12 o’clock epochs, but these 
improvements are less for 24 o’clock epochs. The 
improvement in the accuracies at 12 o’clock can be 
explained by the fact that since the tomography time 
intervals are 1-hour windows and the wet refractivity 
changes related to the water vapor are higher in the 
midday than the midnight as the studied region is a coastal 
area and the higher temperatures at midday, correlating 
the unknowns in time improves the accuracy of the 
estimations. For the 24 o’clock epochs, because the water 
vapor (and correspondingly the wet refractivity index) is 
less variable between the 1-hour tomography time 
intervals at midnight, correlating the unknowns in time 
does not improve the accuracy compared to the midday 
epochs. From figure 7(c), The maximum improvement 
occurred on 8th February 2012 at 12 o'clock. From Table 
(1) it can be seen that this epoch has the maximum 
amount of precipitable water, thus, the wet refractivity 
index was more variable on this epoch, and therefore, 
correlating the unknowns in time led to a significant 
improvement on this observation epoch. As can be seen 
from Figures 6(d) and 7(d), for both three and four 
dimensional approaches on 8th February 2012 at 24 
o'clock epoch, the tomography solution does not 
correspond with radiosonde profile in lower altitudes. As 
can be derive from Table (2), this epoch has the highest 
wind speed. Thus, the difference between the radiosonde 
profile and the tomography solution can be related to the 
distance of radiosonde balloon from NKX station. 
According to the weather information of the wind speed 
in the station KNKX in Table (2), the wind speed had the 
minimum value on 2nd July 2011 at 12 o'clock. As shown 
in Figures 5(a) and 7(a), the difference between the 
computed wet refractivity index profile and the 
radiosonde data in the lowest altitude is small in both 
three and four dimensions for this epoch. The difference 
between the tomography solution and the radiosonde data 
is generally larger in the lower levels of the atmosphere 
than in the upper layers both in three and four dimensional 
cases. The reason could be that the variability of the wet 
refractivity index is higher in lower levels than the higher 
levels of the atmosphere, and thus, the estimated solution 
has larger errors. 

Conclusion 
In this research, the tomography functional models were 
developed to retrieve the atmospheric refractivity indices. 
The ill-posed tomography problem was solved using 
functional model that led to reduction of unknown 
parameters. The wet refractivity index profiles were 
eventually estimated. For this purpose, a fusion of the 
base functions from spherical cap harmonic and the 
empirical orthogonal was performed to indicate the 
unknowns in three dimensions and afterward, Fourier 
series have used to expand the unknowns in the time 

domain and represent the four-dimensional model. The 
spherical cap harmonics were used to represent the 
longitudinal and latitudinal distribution of the unknowns. 
The empirical orthogonal functions generated from 
weather information in the network were used to show the 
height variability, and the fourier series were used to 
represent the unknowns over time. The results in both three 
and four dimensions were compared with the radiosonde 
station data in the network to evaluate the accuracy of the 
proposed approach. Based on the results, the parameters of 
the functional model are different in various seasons. This 
difference can be caused by the water vapor density 
changes in the atmosphere; the higher the density, the 
higher numbers of parameters are needed to estimate the 
unknowns. Due to the higher variability of the wet 
refractivity index in the midday, the four-dimensional 
model, which correlates the unknown in time, performs 
more accurately than the three-dimensional model at 
midday. It was demonstrated in this study that the wet 
refractivity indices can be estimated by developing the 
functional model and decreasing the number of unknowns. 
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