نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این مقاله فاز نهایی عملیات ملاقات و اتصال مداری مورد مطالعه قرار گرفته است. هدف اصلی، کنترل موقعیت فضاپیمای تعقیب‌کننده می‌باشد به‌گونه‌ای که این فضاپیما در سریع‌ترین زمان ممکن یا به عبارت‌ دیگر با پیمودن یک مسیر بهینه به فضاپیمای هدف برسد. از دیگر مقاصد این مقاله، حداقل مصرف انرژی می‌باشد. در شبیه‌سازی دینامیک از معادلات کلوزی ویلشایر خطی استفاده شده است.درمجموعه معادلات کلوزی ویلشایرخطی، تغییر در هر یک از دو راستای X یا Y منجر به تغییر راستای دیگر شده و بر روی عملیات اتصال تاثیر خواهد گذاشت. برای دست‌یابی به اهداف، متغیرهای موجوددر مسئله باید بهینه شوند. جهت بهینه‌سازی متغیرها از دو روش الگوریتم ژنتیک و ازدحام ذرات بهره گرفته شده است. فضاپیمای تعقیب‌کننده دارای عملگرهای تراستر با ساختار مدولاتور PWPF در نظر گرفته شده و اتصال به یک فضاپیما با موقعیت ثابت، هدف اصلی مسئله است. روش کنترلی مورد استفاده روش LQR بوده که پارامترهای آن نیز جزء متغیرهایی هستند که بهینه خواهند شد. در نهایت برای ارزیابی شرایط واقعی، با اعمال عدم قطعیت بر روی خروجی تراسترها نتایج بررسی می‌شوند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Applying multi-objective optimization approaches to design an optimal controller for orbital docking by consideration of actuators dynamics and comparing results

نویسندگان [English]

  • Hojat Taei
  • Pourya Shokrolahi

MUT.Tehran.IRAN

چکیده [English]

The final phase of orbital rendezvous and docking has been studied in this article. The main objective is to control the position of a chaser that can reach the target in the minimum time, or in other words, bypassing the optimal path. Another important objective of this paper is the minimum energy consumption. In the dynamic simulation, the equations of the linear form of Clohessy-Wiltshire (CWH) equations have been utilized. In linear CWH equations, the change in either direction of X or Y will result in the change in another direction and will affect the orbital docking operation. In order to achieve the objectives of this paper, the design variables should be optimized; To optimize the design variables, two methods, i.e. genetic algorithm (GA) and particle swarm optimization (PSO), have been used. Finally, to evaluate the real conditions, the results will be investigated by applying uncertainty in the outputs of thrusters.

کلیدواژه‌ها [English]

  • Optimal Control
  • Thruster
  • Position Dynamics
  • Genetic Algorithm (GA)
  • Particle Swarm Optimization (PSO)
        Vinod, A.P. and Oishi, M.M. “Optimal trade-off analysis for efficiency and safety in the spacecraft rendezvous and docking problem,” IFAC-PapersOnLine, vol. 51, no. 12, 2018,  pp. 136-141.
[2]   Volpe, R. and Circi, C., “Optical-aided, autonomous and optimal space rendezvous with a non-cooperative target,” Acta Astronautica, vol. 157, 2019, pp. 528-540.
[3]   Xu, Z., Chen, Y. and Xu, Z., “Optimal guidance and collision avoidance for docking with the rotating target spacecraft,” Advances in Space Research, vol. 63, no. 10, 2019, pp. 3223-3234.
[4]   Chan, N. and Mitra, S., “Verified hybrid LQ control for autonomous spacecraft rendezvous,” in Annual Conference on Decision and Control (CDC): IEEE, Melbourne, Australia, pp. 1427-1432, 2017.
[5]   Virgili-Llop, J., Zagaris, C., Park, H., Zappulla, R. and Romano, M., “Experimental evaluation of model predictive control and inverse dynamics control for spacecraft proximity and docking maneuvers,” CEAS Space Journal, 2018, vol. 10, no. 1, pp. 37-49.
[6]   Philip, N.K. and Ananthasayanam,M., “elative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft,” Acta Astronautica, vol. 52, no. 7, 2003, pp. 511-522.
[7]   Mukundan, R. and Ramakrishnan, K., “A quaternion solution to the pose determination problem for rendezvous and docking simulations,” Mathematics and computers in simulation, vol. 39, no. 1-2, 1995, pp. 143-153.
[8]   Song, L., Li, Z. and Ma, X., “Autonomous rendezvous and docking of an unknown tumbling space target with a monocular camera,” in Guidance, Navigation and Control Conference (CGNCC): IEEE, Chinese, 2014, pp. 1008-1013.
[9]   Yu, F., He, Z., Qiao, B., and Yu, X., “Stereo-vision-based relative pose estimation for the rendezvous and docking of noncooperative satellites,” Mathematical Problems in Engineering, vol. 2014, 2014.
[10] Li, Q., Yuan, J., Zhang, B. and Gao, C., “Model predictive control for autonomous rendezvous and docking with a tumbling target,” Aerospace Science and Technology, vol. 69, 2017, pp. 700-711.
[11] Singla, P., Subbarao, K. and L. Junkins, J., “Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 4, 2006, pp. 892-902.
[12] Xia,  K. and Huo, W., “Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties,” Nonlinear Dynamics, vol. 84, no. 3, 2016, pp. 1683-1695.
[13] Lee, D. and Vukovich, G., "Robust adaptive terminal sliding mode control on SE (3) for autonomous spacecraft rendezvous and docking,” Nonlinear Dynamics, vol. 83, no. 4, 2016, pp. 2263-2279.
[14] Weiss, A., Baldwin, M., Erwin, R.S., Kolmanovsky, and I., “Model predictive control for spacecraft rendezvous and docking: Strategies for handling constraints and case studies,” IEEE Transactions on Control Systems Technology, vol. 23, no. 4, 2015, pp. 1638-1647.
[15] Hinkel, H., Cryan, S.P., and D'Souza, C., “Rendezvous and docking strategy for crewed segment of the asteroid redirect mission,” in SpaceOps 2014 Conference, USA, 2014.
[16] Curtis, H.D., Orbital Mechanics for Engineering Students, Third ed. Elsevier Ltd, 2014.
[17] Eugene Lavretsky, K.A.W., Robust and Adaptive Control with Aerospace Applications. Springer, 2013.
[18] Sidi, M.J., Spacecraft Dynamics and Control, Cambridge University Pub., 1997.
[19] Wie, B., Space Vehicle Dynamics and Control, Second ed. American Institute of Aeronautics and Astronautics, Inc, 2008.