نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار گروه پژوهشی طراحی وسایل فضایی، پژوهشکده سامانه های فضانوردی، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری

2 دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

10.22034/jsst.2021.1296

چکیده

در این مقاله رفتار ارتعاشات آزاد، اجباری و پایداری یک سازه انعطافپذیر بلند ترک دار با پایه دوار با استفاده از روش هوموتوپی پرتوربیشن بررسی شده است. ترک در مسئله حاضر با استفاده از المان فنر پیچشی بر روی سازه ای که از تئوری اویلر برنولی تبعیت میکند مدلسازی شده است. معادلات غیرخطی حرکت سیستم با لحاظ تغییرشکلهای خارج صفحه ای و نیروهای گریز از مرکز و با بکارگیری حساب تغییرات و روش مودهای فرضی استخراج شده است. با اعمال روش گلرکین بعد زمانی به صورت یک معادله دیفرانسیل مرتبه دوم غیرخطی در حوزه زمان تبدیل میشود. نتایج به ازاء تغییر پارامترهایی از جمله سرعت دوران، موقعیت و سفتی ترک در قالب نمودارهای پاسخ زمانی، نمودار فازی و دوشاخگی بررسی و تحلیل شده است. نشان داده شده است که با افزایش سرعت زاویه ای، یک نیروی کششی در امتداد محور سازه ایجاد شده که منجر به استحکام تیر ترکدار، حرکت نمودار دوشاخگی بسمت راست و تغییر رفتار غیرخطی سیستم میشود.

کلیدواژه‌ها

عنوان مقاله [English]

Dynamic and Stability Analysis of a Cracked Rotating Flexible إBeam

نویسندگان [English]

  • Milad َAzimi 1
  • Samad Moradi 2

1 Assistant Professor, Aerospace Research Institute of Iran (Ministry of Science, Technology and Research)

2 Department of Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran.

چکیده [English]

The free and forced vibration analysis of a rotating large flexible structure with a single crack is investigated using the Homotopy Perturbation Method (HPM). The crack is modeled with a torsional spring element on a structure that follows the Euler-Bernoulli theory. The nonlinear equations of motion of the co-rotational system considering centrifugal forces are derived using the calculus of variation and the Assumed Mode Method (AMM). Applying the Galerkin method, the spatial domain is extracted and the time domain is transformed into a second-order nonlinear differential equation. The results of time response, phase plane, and bifurcation diagrams for different functional parameters variations such as base angular velocity, crack position and stiffness have been analyzed. Moreover, it is shown that as the base angular velocity increases, a tensile force appears along the cracked structure axis, stiff it, and shifts the backbone to the right, this can highly affect the nonlinear features of the system.

کلیدواژه‌ها [English]

  • Assumed Mode Method
  • Crack
  • Homotopy perturbation
  • Nonlinear Vibration
  • Stability Analysis
[1]    J. Zeng, K. Chen, H. Ma, T. Duan, and B. Wen, "Vibration response analysis of a cracked rotating compressor blade during run-up process," Mech. Sys. and Signal Proc., vol. 118, pp. 568-583, 2019.
[2]    S. Salighe and H. Mohammadi, "Semi-active nonlinear vibration control of a functionally graded material rotating beam with uncertainties, using a frequency estimator," Com. Str., vol. 210, pp. 367-380, 2019.
[3]    S. El Arem, "Nonlinear analysis, instability and routes to chaos of a cracked rotating shaft," Nonlinear Dynamics, vol. 96, pp. 667-683, 2019.
[4]    J. W. Lee and J. Y. Lee, "In-plane bending vibration analysis of a rotating beam with multiple edge cracks by using the transfer matrix method," Meccanica, vol. 52, pp. 1143-1157, 2017.
[5]    B. Li, H. Ma, X. Yu, J. Zeng, X. Guo, and B. Wen, "Nonlinear vibration and dynamic stability analysis of rotor-blade system with nonlinear supports," Arch. of App. Mech., vol. 89, pp. 1375-1402, 2019.
[6]    Y. Li, S. B. Mulani, R. K. Kapania, Q. Fei, and S. Wu, "Nonstationary random vibration analysis of wing with geometric nonlinearity under correlated excitation," J. of Air., vol. 55, pp. 2078-2091, 2018.
[7]    Y. Lu, Q. Shao, M. Amabili, H. Yue, and H. Guo, "Nonlinear vibration control effects of membrane structures with in-plane PVDF actuators: A parametric study," Int. J. of Non. Mech., p. 103466, 2020.
[8]    E. Esmailzadeh, D. Younesian, and H. Askari, "Analytical methods in nonlinear oscillations," Netherlands: Springer, 2018.
[9]    G. Sobamowo and A. Yinusa, "Power Series-Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators," J. of Com. App. Mech., vol. 48, pp. 297-306, 2017.
[10]  M. Islam and E. Yankson, "Boundedness and stability in nonlinear delay difference equations employing fixed point theory," Elec. J. of Qual. The. of Diff. Eq., vol. 26, 2005.
[11]  A. Cardona, A. Lerusse, and M. Geradin, "Fast Fourier nonlinear vibration analysis," Comp. Mech, vol. 22, pp. 128-142, 1998.
[12]  D. Adair and M. Jaeger, "Simulation of tapered rotating beams with centrifugal stiffening using the Adomian decomposition method," Applied Math Mod, vol. 40, pp. 3230-3241, 2016.
[13]  N. Rubinstein and J. T. Stadter, "Bounds to bending frequencies of a rotating beam," J. of the Franklin Ins., vol. 294, pp. 217-229, 1972.
[14]  M. Gómez, C. Castejón, and J. García-Prada, "Crack detection in rotating shafts based on 3× energy: Analytical and experimental analyses," Mech. and Mach. Th., vol. 96, pp. 94-106, 2016.
[15]  A. Yashar, N. Ferguson, and M. Ghandchi-Tehrani, "Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge," J. of S. and Vib., vol. 420, pp. 346-356, 2018.
[16]  B. Panigrahi and G. Pohit, "Effect of cracks on nonlinear flexural vibration of rotating Timoshenko functionally graded material beam having large amplitude motion," Proc. of the Inst. of Mech. Eng., Part C, vol. 232, pp. 930-940, 2018.
[17]  V. Panchore and R. Ganguli, "Quadratic B-spline finite element method for a rotating nonuniform Euler–Bernoulli beam," International Journal for Computational Methods in Engineering Science and Mechanics, vol. 19, pp. 340-350, 2018.
[18]  J. Latalski, J. Warminski, and G. Rega, "Bending–twisting vibrations of a rotating hub–thin-walled composite beam system," Math. and Mech. of Solids, vol. 22, pp. 1303-1325, 2017.
[19]  S. Kitipornchai, L. Ke, J. Yang, and Y. Xiang, "Nonlinear vibration of edge cracked functionally graded Timoshenko beams," Journal of sound and vibration, vol. 324, pp. 962-982, 2009.
[20]  M. J. Khodaei, A. Mehrvarz, N. Candelino, and N. Jalili, "Theoretical and experimental analysis of coupled flexural-torsional vibrations of rotating beams," in ASME Dyn. Sys. and Con. Conf., 2018.
[21]  C. Karaagac, H. Öztürk, and M. Sabuncu, "Free vibration and lateral buckling of a cantilever slender beam with an edge crack: experimental and numerical studies," J. of S. & Vib., vol. 326, pp. 235-250, 2009.
[22]  J. Gawryluk, A. Mitura, and A. Teter, "Dynamic response of a composite beam rotating at constant speed caused by harmonic excitation with MFC actuator," Com. Str., vol. 210, pp. 657-662, 2019.
[23]  J. Chen and Q.-S. Li, "Vibration characteristics of a rotating pre-twisted composite laminated blade," Com. Str., vol. 208, pp. 78-90, 2019.
[24]  M. Afshari and D. J. Inman, "Continuous crack modeling in piezoelectrically driven vibrations of an Euler–Bernoulli beam," J. of Vib. and Con., vol. 19, pp. 341-355, 2013.
[25]  S.-Q. An, H.-L. Zou, Z.-C. Deng, and W.-P. Hu, "Dynamic analysis on hub–beam system with transient stiffness variation," Int. J. of Mech. Sci, vol. 151, pp. 692-702, 2019.
[26]  A. Beléndez, A. Hernández, T. Beléndez, M. L. Alvarez, S. Gallego, M. Ortuño, et al., "Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire," J. of S.& Vib., vol. 302, pp. 1018-1029, 2007.
[27]  D. Younesian, H. Askari, Z. Saadatnia, and M. KalamiYazdi, "Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency–amplitude formulation and He’s energy balance method," Com. & Math. with App., vol. 59, pp. 3222-3228, 2010.
[28]  M. Ghadiri and M. Safi, "Nonlinear vibration analysis of functionally graded nanobeam using homotopy perturbation method," Adv. in App. Math. and Mech., vol. 9, pp. 144-156, 2017.
[29]  K. Manimegalai, S. Z. CF, P. Bera, P. Bera, S. Das, and T. Sil, "Study of strongly nonlinear oscillators using the Aboodh transform and the homotopy perturbation method," The Eur. Phy. J. Plus, vol. 134, p. 462, 2019.
[30]  M. Shishesaz, M. Shariati, A. Yaghootian, and A. Alizadeh, "Nonlinear Vibration Analysis of Nano-Disks Based on Nonlocal Elasticity Theory Using Homotopy Perturbation Method," Int. J. of App. Mech., vol. 11, p. 1950011, 2019.
[31]  A. A. Yazdi, "Nonlinear aeroelastic stability analysis of three-phase nano-composite plates," Mechanics Based Design of Structures and Machines, vol. 47, pp. 753-768, 2019.
[32]  A. Allahverdizadeh, R. Oftadeh, M. Mahjoob, and M. Naei, "Homotopy perturbation solution and periodicity analysis of nonlinear vibration of thin rectangular functionally graded plates," Acta Mech. Solida Sinica, vol. 27, pp. 210-220, 2014.
[33]  P. Gonçalves, F. Silva, and Z. Del Prado, "Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition," J. of S. & Vib., vol. 315, pp. 641-663, 2008.
[34]  S. S. Rao, Vibration of continuous systems vol. 464: Wiley Online Library, 2007.
[35]  S. Liao, Beyond perturbation: introduction to the homotopy analysis method: CRC press, 2003.