نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده مهندسی فناوریهای نوین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشکده مهندسی فناوری های نوین، دانشگاه شهید بهشتی، تهران، ایران

10.22034/jsst.2021.1248

چکیده

روش کنترل تطبیقی به دلیل غلبه بر مشکل وجود عدم قطعیت‌ها در مأموریت‌های فضایی مورد توجه قرار می‌گیرد. در این مقاله یک روش کنترل تطبیقی مستقیم بهینه نوین که بر اساس پارامترهای مارکوف طراحی می‌گردد جهت کنترل وضعیت ماهواره ارائه می‌شود، و مسئله کنترل وضعیت ماهواره با استفاده از این روش کنترلی و عملگر تراستر غیرخطی در حضور نامعینی‌های ممان اینرسی بررسی می‌گردد. در روش کنترلی ارائه شده عملکرد سیستم بر اساس ماتریس‌های دوران بیان می‌شود، و این روش مشکل سینگولاریتی ندارد. جهت مقایسه روش معرفی شده با سایر روش‌های کنترلی، کنترل وضعیت ماهواره با استفاده از کنترلر فازی شبیه‌سازی می‌گردد، و در نهایت برتری روش کنترلی فازی نسبت به روش کنترل تطبیقی بیان شده با در نظر گرفتن زمان صعود و نشست سیستم نشان داده می‌شود. همچنین نتایج حاصل از شبیه‌سازی‌ها نشان می-دهند که روش کنترل تطبیقی ارائه شده با استفاده از عملگر تراستر روشن-خاموش نسبت به عدم قطعیت در اینرسی مقاوم است.

کلیدواژه‌ها

عنوان مقاله [English]

Kinematic Modelling Without Singularity and Nonlinear Control of Satellite Attitude Using Direct Adaptive and Fuzzy PD Control Methods

نویسندگان [English]

  • Mohammd Navabi 1
  • Nazanin Safaei Hashekvaei 2

1 Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran

2 Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran

چکیده [English]

Adaptive control technique is taken into consideration because of overcoming the problem of existence of uncertainties in the space missions.In this paper, a novel optimal direct adaptive control technique which is based on Markov parameters is presented. In this technique, the system's performance is expressed based on rotation matrices, and this method doesn't have a singularity problem. The problem of satellite attitude control using this method and nonlinear thruster actuator in existence of uncertainty in moment of inertia is analyzed. The novel adaptive controller using on-off thrusters is robust to inertia changes. In this paper, a mamdani fuzzy logic is used to schedule the gains of PD control method, and the satellite attitude control problem using a fuzzy controller is simulated. With considering the settling and rise times, it's shown that the fuzzy controller is better than the presented adaptive controller. Also, the problem of satellite attitude control using the novel adaptive controller in presence of a constant disturbance is analyzed, and simulation results illustrate that the new adaptive control is robust to a constant disturbance.

کلیدواژه‌ها [English]

  • Satellite attitude
  • optimal adaptive control
  • On-off thrusters
  • Fuzzy controller
  • constant disturbance
  1. Kristiansen, R. and Hagen, D., “Modeling of Actuator Dynamics for Spacecraft Attitude Control,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 3, 2009, pp. 1022-1025.
  2. Ahmed, J., Coppola, V. T. and Bernstein, D. S., “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5, 1998, pp. 684–691.
  3. Seo, D. and Akella, M. R., “High-performance Spacecraft Adaptive Attitude-tracking Control Through Attracting-Manifold Design,” Journal of guidance, control, and dynamics, 31, No. 4, 2008, pp. 884–891.
  4. Xiao, B., Hu, Q. and Zhang, Y., “Fault-tolerant Attitude Control for Flexible Spacecraft without Angular Velocity Magnitude Measurement,” Journal od Guidance, Control, and Dynamics, Vol. 34, No. 5, 2011, pp. 1556-1561.
  5. Sheen, J. J. and Bishop, R. H., “Spacecraft Nonlinear Control,” Journal of the Astronautical Sciences, Vol. 42, No. 3, 1994, pp. 361-377.
  6. Skullestad, A. and Gilbert, M. J., “ Control of Gravity Gradient Stabilized Satellite,” Control Engineering Practice, Vol. 8, No. 9, 2000,  975-983.
  7. Luo, W., Chu, Y.-C. and Ling, K.-V. “Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft,” Automatic Control, IEEE Transaction on, Vol. 50, No. 11, 2005, pp. 1639-1654.
  8. Slotine, J. J. E. and Li, W., Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, 1991.
  9. Astrom, K. J. and Wittenmark, B., Adaptive Control, 2nd, Addison-Wesley, Reading MA, 1995.
  10. Laonnau, P., Sun, J., “Theory and Design of Robust Direct and Indirect Adaptive Control Schemes,” International Journal of Control, Vol. 47, No. 3, 1998, pp. 775-813.
  11. Slotine, J. J. E. and Di Benedetto, M., “Hamiltonian Adaptive Control of Spacecraft,” IEEE Transactions on Automatic Control, Vol. 35, No. 7, 1990, pp. 848-852.
  12. Lee, K. W. and Singh, S. N., “Quaternion-based Adaptive Attitude Control of Asteroid-orbiting Spacecraft via Immersion and Invariance,” Acta Astronautica, Vol. 167, 2020, pp. 164–180.
  13. Bai,, Biggs, J. D., Zazzera, F. B. and Cui, N., “Adaptive Attitude Trackingwith Active Uncertainty Rejection,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018, pp. 550–558.
  14. Yoon, H. and Tsiotras, P., “Spacecraft Adaptive Attitude and Power Tracking with Variable Speed Control Moment Gyroscopes,” AIAA Journal of Guidance, Control and Dynamics, Vol. 25, No. 6, 2002, pp. 1081-1090.
  15. Zeng, Y., Araujo, A. D. and Singh, S. N., “Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft,” Acta Astronautica, Vol. 44, No. 1, 1999, pp. 11– 22.
  16. Chen, Z. and Huang, J., “Attitude Tracking and Disturbance Rejection of Rigid Spacecraft by Adaptive Control,” IEEE Transactions on Automatic Control, Vol. 54, No. 3, 2009, pp. 600-605.
  17. Navabi, M. and Safaei Hashkavaei, N., “Design of Optimal Adaptive Control for Satellite Attitude in Presence of Uncertainty in Moment of Inertia,” Proceedings of 5th International Conference on Knowledge-Based Engineering and Innovation, IEEE, 2019, pp. 478-483.
  18. Hall, P. Tsiotras, and H. Shen, “Tracking Rigid Body Motion Using Thrusters and Momentum Wheels,” The Journal of the Astronautical Sciences, Vol. 50, No. 3, 1998, pp. 311-323.
  19. C-H. Cheng, S-L. Shu, and P-J. Cheng, “Attitude Control of a Satellite Using Fuzzy Controllers,” The Journal of Expert Systems with Applications, Vol. 36, 2009, pp. 6613-6620.
  20. Li, J., Post, M. and Lee, R., “Real-time Nonlinear Attitude Control System for Nanosatellite Applications,” Journal of Guidance, Conrtol, and Dynamics, Vol. 36, No. 6, 2013, pp. 1661-1671.
  21. Geng, Q., Li, P., Zhang, T., Ju, Sh. and Yang, H., “Fuzzy Control of Spacecraft Attitude Maneuver with Actuator Saturation,” Proceedings of the 36th Chinese Control Conference, 2017, pp. 4204-4209.
  22. Sidi, M. J., Spacecraft Dynamics and Control, a Practical Engineering Approach, Cambridge University Press, 1997.
  23. ­D`Amato, A. M., Sumer, E. D. and Bernstein, D. S., “Frequency-domain Stability Analysis of Retrospective-Cost Adaptive Control for Systems with Unknown Nonminimum-phase Zeros,” 50th IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 1098-1103.
  24. Al Janaideh, M. and Bernstein, D. S., “Adaptive Control of Hammerstein Systems with Unknown Input Nonlinearity and Partially Modeled Linear Dynamics,” International Journal of Control, Automation and Systems, Vol. 14, No. 4, 2016, pp. 957-966.
  25. Yan, J. and Bernstein, D. S., “Minimum Modelling Retrospective Cost Adaptive Control of Uncertain Hammerstein Systems Using Auxiliary Nonlinearities,” International Journal of Control, Vol. 87, No. 3, 2014, pp. 483–505.
  26. Chen, C. T., Linear System Theory and Design, 3rd Ed., Oxford University Press, 1999.