نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه پژوهشی پرتوفرآوری و دزیمتری، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای، تهران، ایران

2 گروه ارتباطات ماهواره ای، پژوهشکده فناوری ارتباطات، پژوهشگاه ارتباطات و فناوری اطلاعات، تهران، ایران

3 دانشکده فنی مهندسی، دانشگاه زنجان، زنجان، ایران

10.22034/jsst.2021.1267

چکیده

تشعشعات فضایی می‌تواند بر عملکرد و قابلیت اطمینان قطعات موجود در سامانه‌های فضایی تاثیرگذار باشد. در این مقاله بر بررسی سه نوع آسیب‌های پرتویی شامل دز یونیزان، آسیب جابه جایی و تک رخدادی با استفاده از نرم افزار OMERE متمرکز شده است. با در نظر گیری نتایج خروجی از این نرم افزار چگونگی به کارگیری و استفاده از‌ انواع قطعات الکترونیک با گریدهای مختلف تجاری، نظامی و فضایی در ماهواره های LEO و‌GEO مورد بحث قرار می‌گیرد.‌ نتایح نشان می‌دهد که برای این قطعات، آسیب جابه جایی دارای کمترین مخاطره است. در صورت استفاده از قطعات تجاری در مدار GEO باید محدودیت های بودجه جرمی نیز مد نظر قرار گیرد. بیشترین مقدار ضخامت برای ایمنی قطعات در مدار LEO و GEO به ترتیب 6/2 و 5/9 میلیمتر آلومینیم است. با توجه به عدم تاثیرپذیری آسیب SEE از افزایش ضخامت، بهترین راه حل در برابر این آسیب، استفاده از راهکارهای مقاوم سازی در برابر تابش خصوصا مباحث نرم افزاری است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation and feasibility study of using components with different categories from the perspective of radiation damage in LEO and GEO orbits

نویسندگان [English]

  • Hamideh Daneshvar 1
  • Azam Eidi 2
  • Leila Mohamadi 2
  • Reza Omidi 3
  • Pedram Hajipour 2

1 Department of Radiation and Dosimetry, Radiation Application Research Schoole, Nuclear Science and Technology Research Institute, Tehran, Iran

2 ICT Research Institute (ITRC), Tehran, IRAN

3 Department of Engineering, Zanjan University, Zanjan, IRAN

چکیده [English]

Space radiation can affect the performance and reliability of components in space systems. This paper focuses on the investigation of three types of radiation damage including ionizing dose, displacement damage, and single event damage using OMERE software. Considering the outputs of this software, how to use and use a variety of electronic components with different commercial, military and space grades in LEO and GEO satellites is discussed. These components have the least risk of displacement damage. Mass budget constraints should also be considered when using commercial components in the GEO circuit. The maximum thickness for the safety of components in LEO and GEO circuits is 2.6 mm and 9.5 mm respectively. Given the inability of SEE damage to increase in thickness, the best solution to this damage is to use radiation-resistant solutions, especially software issues.

کلیدواژه‌ها [English]

  • Space Radiation
  • thickness
  • Total Ionizing Dose
  • Displacement damage
  • Single Event Effects
  • Commercial Military Space
[1]  J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, "Radiation hardness assurance testing of microelectronic devices and integrated circuits: Radiation environments, physical mechanisms, and foundations for hardness assurance," IEEE Transactions on Nuclear Science, vol. 60, pp. 2074-2100, 2013.
[2]     A. Maki, "2-1-5 Space Radiation Effect on Satellites," Journal of the National Institute of Information and Communications Technology, Vol, vol. 56, 2009.
[3]     D. Gingrich, N. Buchanan, L. Chen, and S. Liu, "Ionizing radiation effects in EPF10K50E and XC2S150 programmable logic devices," in Radiation Effects Data Workshop, 2002 IEEE, 2002, pp. 41-44.
[4]     P. Meyer, R. Ramaty, and W. R. Webber, "Cosmic rays-Astronomy with energetic particles.[production mechanisms, abundance and energy spectra review],"vol. 27, Issue 10, p. 23, 1974.
[5]     J. L. Barth, "Modeling space radiation environments," in IEEE Nuclear and Space Radiation Effects Conference (NSREC), 1997, 1997.
[6]     Henok T. Mebrahtu, W. Gao, P.J. Thomas, W.E. Kieser and R. Hornsey, "Heavy ion radiation effects on CMOS image sensors." Photonics North 2004, vol. 5578, pp.323- 333, 2004.
[7]     H. Daneshvar, M. Khoshsima, and A. Dayyani. "Study of Modeling Parameters in Determination of TID, DD, and SEE Radiation Damages for Satellite in LEO Orbit Using OMERE Software." Journal of Space Science and Technology, vol. 12, no. 3, pp. 63-71, 2019 (In Persian).
[8]     A.l. Bosser, "single evenet effects of space and atmospheric radiation on memory components," Research Report, Academic Dissertation for the Degree of Doctor of Philosophy, PhD, 2017.
[9]     Pease, Ronald L., Allan H. Johnston, and Joseph L. Azarewicz, "Radiation testing of semiconductor devices for space electronics." Proceedings of the IEEE, vol. 76, no. 11, pp. 1510-1526, 1988.
[10]   Secretariat, E. C. S. S. "Methods for the calculation of radiation received and its effects, and a policy for design margins." European Cooperation for Space Standardization, Noordwijk, 2008.
[11] A. Ismailian, S. A. H. Faghihi, H. Jafari, A. Pahlavan, "Studying and Calculating the Radiation Damage Caused by the Solar Radiation Spectrum in the Crystal Structure of Semiconductor Components," Journal of Space Science and Technology, vol. 6, no. 3, pp. 2013.
[12]   A.H. Johnston, "Radiation damage of electronic and optoelectronic devices in space." pp. 1-9, 2000.
[13]   Space environment, ECSS-E-ST-10-04C, 2008.
[14]   L. Adams, "Space radiation effectsin electronic components," Brunel University, Spur Electron. for: PA and Safety Office, 2003.
[15]   "Radiation hardness assurance - EEE components," in ECSS Secretariat, ed, 2012.
[16]   J. C. Pickel and J. T. Blandford, "Cosmic ray induced in MOS memory cells," IEEE Transactions on Nuclear Science, vol. 25, pp. 1166-1171, 1978.
[17]   D. Binder, E. Smith, and A. Holman, "Satellite anomalies from galactic cosmic rays," IEEE Transactions on Nuclear Science, vol. 22, pp. 2675-2680, 1975.
[18]   E. Daly, P. Nieminen, A. Mohammadzadeh, R. Harboe Sørensen, R. de Marino, K. Hunter, et al., "Standards for space radiation environments and effects," in ESA Special Publication, Provided by the NASA Astophisics, Data ystem, 2004, p. 175.
[19]   S. Borbor, S. A. H. Faghihi, H. JafarI, "Sensitive Volume Modeling in Calculation of Space Radiation-Induced SEU Cross Section," Journal of Space Science and Technology, vol. 6, January 2014.
[20]   P. E. Dodd and L. W. Massengill, "Basic mechanisms and modeling of single-event upset in digital microelectronics," IEEE Transactions on nuclear Science, vol. 50, pp. 583-602, 2003.
[21]   E. Petersen, J. Pickel, J. Adams, and E. Smith, "Rate prediction for single event effects-a critique," IEEE Transactions on Nuclear Science, vol. 39, pp. 1577-1599, 1992.
[22]   D. Gleeson and M. Melicher. "The Smart backplane–lowering the cost of spacecraft avionics by improving the radiation tolerance of COTS electronic systems." Proc. 33nd Space Symp.(Technical Track), 2017.
[23]   Hermetic package sealing. Available: http://www. palomartechnologies.com/solutions/hermetic-package-sealing, 2017.
[24]   D. Sinclair, and J. Dyer. "Radiation effects and COTS parts in SmallSats." 27th Annual AIAA/USU Conferecne on Small Satellites ,2013.
[25]   R. A. Austin, "A Radiation-reliability Assurance Case Using Goal Structuring Notation for a CubeSat Experiment," Vanderbilt University, 2016.
[26]   E. Petersen, Single event effects in aerospace, John Wiley & Sons, 2011.
[27]   The OMERE Software. Available: http://www.trad.fr/e n/space/omere-sotftware/, 2018
[28]   A. Varotsou, "OMERE space radiation environment and effects tool: new developments and new interface," 2017.
[29] A. Varotsou, "The OMERE freeware for space radiation environment and effects," 2013.
[30]   N.G. Chechenin, M. Sajid, and C.I. Pakistan, "Multiple cell upsets rate estimation for 65 nm SRAM bit-cell in space radiation environment," Physics of Atomic Nuclei, vol. 74, pp. 1718-1724, 2016.
[31]   N. Sukhaseum, N. Chatry, A. Varotsou, J.-C. Thomas, F. Bezerra, and R. Ecoffet, "Statistical estimation of uncertainty for single event effect rate in OMERE," in 12th European Conference on Radiation and Its Effects on Components and Systems, 2011, pp. 401-407.
[32]   A. Varotsou, N. Chatry, P.-F. Peyrard, F. Bezerra, A. Samaras, E. Lorfèvre, et al., "Shielding geometry effect on SEE prediction using the new OMERE release: JASON-2 mission case study," in 12th European Conference on Radiation and Its Effects on Components and Systems, 2011, pp. 849-853.
[33]   J. Guillermin, N. Sukhaseum, A. Privat, P. Pourrouquet, T. Cardaire, N. Chatry, et al., "Assessment of the direct ionization contribution to the proton SEU rate," in Proc. RADECS, 2016.
[34]   SPENVIS. Available: http://www.spenvis.oma.be/ spenvis/help/system/toc.html
[35]   E. Petersen, "The SEU figure of merit and proton upset rate calculations," IEEE Transactions on Nuclear Science, vol. 45, pp. 2550-2562, 1998.
[36]   A. Chumakov, "Simplified One Parameter Proton-Induced SEU Cross Section Dependence," in ESA Special Publication, 2004, p. 415.
[37]   M. Huhtinen and F. Faccio, "Computational method to estimate Single Event Upset rates in an accelerator environment," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 450, pp. 155-172, 2000.
[38]   L. Connell, F. Sexton, and A. Prinja, "Further development of the ion cross section for single event upset: model (HICUP)," Sandia National Labs.1995.
[39]   H. Pham and C.-D. Lai, "On recent generalizations of the Weibull distribution," IEEE transactions on reliability, vol. 56, pp. 454-458, 2007.
[40]         P. Bhattacharya, Weibull distribution for estimating the parameters, in Wind Energy Management, ed: Intech Open, 2011.