نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار، گروه پژوهشی طراحی وسایل فضایی، پژوهشکده سامانه های فضانوردی، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری، تهران، ایران

2 کارشناسی ارشد، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران

چکیده

این مقاله به طراحی سیستم کنترل ترکیبی مانور و ارتعاشات یک فضاپیمای انعطافپذیر در مانور وضعیت با استفاده از عملگرهای تراستر-چرخ عکس العملی در ساختار هیبرید و وصله های پیزوالکتریک پرداخته است. مانور زاویه-بزرگ این فضاپیما در قالب دو ماموریت مجزا با استفاده از مدل توسعه یافته کنترلری مبتنی بر تئوری لیاپانوف و ارتعاشات باقی مانده با به کارگیری تئوری فیدبک نرخ کرنش کنترل شده است. پایداری کلی سیستم شامل دینامیک چرخ عکس العملی و وصله های حسگر/عملگر پیزوالکتریک با استفاده از ورودی ناپیوسته کنترلی تولید شده توسط تراستر و مدولاتور پهنا-باند/پالس-فرکانس اثبات و ارتعاشات باقی مانده به حداقل رسیده است. ویژگی منحصر به فرد روش پیشنهادی در به کارگیری عملگرها، زمان سوئیچ عملکرد تراسترها و چرخ عکس العملی می باشد که مبتنی بر انرژی سیستم تنظیم شده است. شبیه سازی های انجام شده با به کارگیری تئوری کنترلی پیشنهادی و استفاده از عملگرهای هیبرید امکان انجام مانورهای با زاویه بزرگ و کاهش قابل ملاحظه ارتعاشات را نمایش می دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Active Vibration Control of a Maneuvering Flexible Spacecraft Using Hybrid Actuators: A Lyapunov-Based Control Approach

نویسندگان [English]

  • Milad َAzimi 1
  • Samad Moradi 2

1 Assistant Professor, Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran. Iran

2 M.Sc., Department of Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran

چکیده [English]

This paper presents a study concerning active vibration control of a smart flexible spacecraft during attitude maneuver using thrusters and reaction wheels (RW) in combination and piezoelectric (PZT) sensor/actuator patches. The large-angle maneuver and residual vibration of the spacecraft are controlled using an extended Lyapunov-based design (ELD) and strain rate feedback (SRF) theory for a two-mode mission. The single-axis fully coupled nolinear rigid-flexible dynamic of the system is derived applying a Lagrangian approach and Finite Element Method (FEM). The overall stability of the system including energetic terms covering a hub and two flexible appendages, torsional spring, RW, and PZT dynamics, has been proved and the control law has been derived accordingly. A pulse-width pulse-frequency (PWPF) modulation is used to alleviate the excitations of high-frequency flexible modes. However, due to the fast maneuver, there are still residual vibrations in the system. Hence, the SRF algorithm using PZT is applied to prepare further vibration suppression. A great feature of the proposed hybrid actuator system is the switching time of the thrusters and RW, which is based on total system energy. The numerical results for a flexible spacecraft with large-angle, agile, and precise maneuver requirements through a comparative study verify the merits of the proposed approach.

کلیدواژه‌ها [English]

  • Active vibration control
  • Flexible spacecraft
  • Hybrid actuators
  • Lyapunov design
  • Piezoelectric patches
[1]     M. Navabi, M. Tavana, and H. Mirzaei, "Attitude control of spacecraft by state dependent riccati equation and power series expansion of riccati methods," Space Science and Tech., vol. 7, pp. 39-49, 2015.
[2]     Y.-T. Xu, A.-G. Wu, Q.-H. Zhu, and R.-Q. Dong, "Observer-Based Sliding Mode Control for Flexible Spacecraft With External Disturbance," IEEE Access, vol. 8, pp. 32477-32484, 2020.
[3]     C. Wei, Y. Liao, W. Xi, Z. Yin, and J. Luo, "Event-driven adaptive fault-tolerant tracking control for uncertain mechanical systems with application to flexible spacecraft," J. of Vibration and Control, p. 1077546320902562, 2020.
[4]     Y. Liu, Y. Fu, W. He, and Q. Hui, "Modeling and observer-based vibration control of a flexible spacecraft with external disturbances," IEEE Transactions on Industrial Electronics, vol. 66, pp. 8648-8658, 2018.
[5]     H. Sun, L. Hou, G. Zong, and L. Guo, "Composite anti-disturbance attitude and vibration control for flexible spacecraft," IET Control Theory & Applications, vol. 11, pp. 2383-2390, 2017.
[6]     W. Zhu, Q. Zong, and B. Tian, "Adaptive tracking and command shaped vibration control of flexible spacecraft," IET Control Theory & Applications, vol. 13, pp. 1121-1128, 2019.
[7]     L. Liu, D. Cao, and J. Wei, "Rigid-flexible coupling dynamic modeling and vibration control for flexible spacecraft based on its global analytical modes," Science China Tech. Sciences, vol. 62, pp. 608-618, 2019.
[8]     M. S. De Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. Zhang, Lyapunov-based control of mechanical systems: Springer Science & Business Media, 2012.
[9]     S. S. Ge, T. H. Lee, and G. Zhu, "Genetic algorithm tuning of Lyapunov-based controllers: An application to a single-link flexible robot system," IEEE Transactions on Industrial Electronics, vol. 43, pp. 567-574, 1996.
[10]   C. Zhong, Z. Chen, and Y. Guo, "Attitude control for flexible spacecraft with disturbance rejection," IEEE Transactions on Aerospace and Electronic Systems, vol. 53, pp. 101-110, 2017.
[11]   A. M. Lyapunov, "The general problem of the stability of motion," Int. j. of control, vol. 55, pp. 531-534, 1992.
[12]   R. Pérez-Alcocer and J. Moreno-Valenzuela, "A novel Lyapunov-based trajectory tracking controller for a quadrotor: Experimental analysis by using two motion tasks," Mechatronics, vol. 61, pp. 58-68, 2019.
[13]   M. Bujarbaruah and S. Sukumar, "Lyapunov based attitude constrained control of a spacecraft," Advances in the Astronautical Sci. Astrodynamics, vol. 156, pp. 1399-1407, 2016.
[14]   G. Mattei, P. Di Giamberardino, S. Monaco, and D. Normand-Cyrot, "Lyapunov based attitude stabilization of an underactuated spacecraft with flexibilities," 2nd IAA-AAS-DyCoSS-Roma, pp. 14-07, 2014.
[15]   Z. Chen, B. L. Cong, and X. D. Liu, "A robust attitude control strategy with guaranteed transient performance via modified Lyapunov-based control and integral sliding mode control," Nonlinear Dynamics, vol. 78, pp. 2205-2218, 2014.
[16]   A. Abdessameud and A. Tayebi, "Attitude synchronization of a spacecraft formation without velocity measurement," in 2008 47th IEEE Conf. on Decision and Control, 2008, pp. 3719-3724.
[17]   A. R. Mehrabian, S. Tafazoli, and K. Khorasani, "Coordinated attitude control of spacecraft formation without angular velocity feedback: a decentralized approach," in AIAA Guidance, Navigation, and Con. Conf., 2009, p. 6289.
[18]   D. Ye and Z. Sun, "Variable structure tracking control for flexible spacecraft," Aircraft Eng. and Aero. Tech.: An Int. J., vol. 88, pp. 508-514, 2016.
[19]   Q. Hu, P. Shi, and H. Gao, "Adaptive variable structure and commanding shaped vibration control of flexible spacecraft," J. of Guidance, Control, and Dyn., vol. 30, pp. 804-815, 2007.
[20]   B.-H. Lee, B.-U. Lee, H.-S. Oh, S.-H. Lee, and S.-W. Rhee, "Time optimal attitude maneuver strategies for the agile spacecraft with reaction wheels and thrusters," J. of mechanical science and Tech., vol. 19, pp. 1695-1705, 2005.
[21]   C. Hall, P. Tsiotras, and H. Shen, "Tracking rigid body motion using thrusters and momentum wheels," in AIAA/AAS Astrodynamics Specialist Conf. and Exhibit, 1998, p. 4471.
[22]   S. Zhaowei, G. Yunhai, X. Guodong, and H. Ping, "The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite," Acta Astronautica, vol. 54, pp. 463-469, 2004.
[23]   V. J. Lappas, "A control moment gyro (CMG) based attitude control system (ACS) for agile small satellites," University of Surrey, 2002.
[24]   M. Navabi and H. Rangraz, "Comparing optimum operation of Pulse Width-Pulse Frequency and Pseudo-Rate modulators in spacecraft attitude control subsystem employing thruster," in 2013 6th International Conference on Recent Advances in Space Tech. (RAST), 2013, pp. 625-630.
[25]   V. Bohlouri, M. Ebrahimi, and S. H. J. Naini, "Robust optimization of satellite attitude control system with on-off thruster under uncertainty," in 2017 Int. Conference on Mechanical, System and Control Eng. (ICMSC), 2017, pp. 328-332.
[26]   M. J. Sidi, Spacecraft dynamics and control: a practical engineering approach vol. 7: Cambridge university press, 1997.
[27]   A. Mazinan, M. Pasand, and B. Soltani, "Full quaternion based finite-time cascade attitude control approach via pulse modulation synthesis for a spacecraft," ISA transactions, vol. 58, pp. 567-585, 2015.
[28]   G. Song and B. N. Agrawal, "Vibration suppression of flexible spacecraft during attitude control," Acta Astro., vol. 49, pp. 73-83, 2001.
[29]   V. Lappas and B. Wie, "Robust control moment gyroscope steering logic with gimbal angle constraints," J. of Guidance, control, and dynamics, vol. 32, pp. 1662-1666, 2009.
[30]   J. Wang and D. Li, "Experiments study on attitude coupling control method for flexible spacecraft," Acta Astronautica, vol. 147, pp. 393-402, 2018.
[31]   Q. Yuan, Y. Liu, and N. Qi, "Active vibration suppression for maneuvering spacecraft with high flexible appendages," Acta Astronautica, vol. 139, pp. 512-520, 2017.
[32]   P. Shivashankar and S. Gopalakrishnan, "Review on the use of piezoelectric materials for active vibration, noise, and flow control," Smart Materials and Str., vol. 29, p. 053001, 2020.
[33]   S. M. Newman, "Active damping control of a flexible space structure using piezoelectric sensors and actuators," Naval Postgraduate School Montrey CA1992.
[34]   R. Weldegiorgis, P. Krishna, and K. Gangadharan, "Vibration control of smart cantilever beam using strain rate feedback," Procedia Materials Science, vol. 5, pp. 113-122, 2014.
[35]   A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, "IEEE standard on piezoelectricity," ed: Society, 1988.
[36]   E. Lu, W. Li, X. Yang, M. Fan, and Y. Liu, "Modelling and composite control of single flexible manipulators with piezoelectric actuators," Shock and Vibration, vol. 2016, 2016.
[37]   R. Dubay, M. Hassan, C. Li, and M. Charest, "Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator," Isa Transactions, vol. 53, pp. 1609-1619, 2014,.
[38]   Q. Hu, "Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics," Nonlinear Dynamics, vol. 52, pp. 227-248, 2008.
[39]   J. L. Junkins, Z. Rahman, and H. Bang, "Near-minimum-time control of distributed parameter systems-Analytical and experimental results," J. of Guidance, Control, and Dynamics, vol. 14, pp. 406-415, 1991.
[40]   J. Wang, Y. Pi, Y. Hu, Z. Zhu, and L. Zeng, "Adaptive simultaneous motion and vibration control for a multi flexible-link mechanism with uncertain general harmonic disturbance," J. of Sound and Vibration, vol. 408, pp. 60-72, 2017.
[41]   B. Bandyopadhyay and T. Manjunath, "Fault tolerant control of flexible smart structures using robust decentralized fast output sampling feedback technique," Asian J. of Control, vol. 9, pp. 268-291, 2007.
[42]   M. Pasand, A. Hassani, and M. Ghorbani, "A study of spacecraft reaction thruster configurations for attitude control system," IEEE Aero. & Electronic Sys. Mag., vol. 32, pp. 22-39, 2017.