نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

2 استادیار، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در این مقاله، با استفاده از روش کنترلی پیش‌بین مدل مبنا و بر پایه استراتژی هدایت تناسبی به طراحی قانون هدایت بهینه صریح جهت هدایت موشک پدافندی به سمت هدف در حال مانور در فضای سه‌بعدی پرداخته می‌شود. این روش کنترلی با پیش‌بینی رفتار سیستم در آینده، در خلال بهینه‌سازی یک تابع هزینه مشخص قانون کنترلی بهینه را محاسبه می‌کند. رویکرد کنترلی پیش‌بین تعمیم‌یافته که در این مقاله مورد استفاده قرار گرفته است، مسأله بهینه‌سازی را به صورت برون‌خط حل می‌کند تا فرم بسته قانون کنترلی بهینه را به دست آورد. به این منظور، ابتدا معادلات حرکت مجموعه موشک و هدف در دستگاه سه‌بعدی بازنویسی می‌شود. سپس قانون کنترلی بهینه به صورت تابعی صریح از متغیرهای حالت محاسبه می‌گردد. عملکرد سیستم هدایت پیشنهادی با سیستم هدایت تناسبی APN در سه سناریو متفاوت مقایسه شده و نتایج شبیه‌سازی نشان‌دهنده کارایی مطلوب سیستم پیشنهادی به ویژه در مقابله با اهداف با تغییر مسیرهای ناگهانی می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimal Proportional Navigation in Three-Dimensional Space Using Model Predictive Control Approach

نویسندگان [English]

  • Reza Sheikhbahaei 1
  • Saeed Khankalantary 2

1 Department of Mechanical Engineering, Sharif University of Technology (SUT), Tehran, I.R.Iran

2 Assistant Professor. Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran. Iran

چکیده [English]

In this study, on the basis of proportional navigation strategy, design of explicit optimal guidance law for missiles tracking maneuvering targets in three-dimensional space using model predictive control is addressed. The model predictive control employs a model to predict the future process behavior and calculates an optimal control input at each time step through the optimization of an objective function. Generalized model predictive control approach, employed in this study, solves the optimization problem offline to obtain the closed form optimal control law. In this paper, firstly, the equations describing the missile-target relative motion kinematics are formulated. Then, the optimal control law, as an explicit function of the state vector is obtained. The evaluation of the proposed scheme is studied by the comparison of the simulation results with the augmented proportional navigation system. Simulation studies, in three different scenarios, demonstrates appropriate performance for the proposed guidance system specially against maneuvering targets.

کلیدواژه‌ها [English]

  • Model Predictive Control
  • Proportional Navigation
  • Three Dimensional
  • Explicit Optimal Guidance Law
  1. Zarchan, Tactical and strategic missile guidance: American Institute of Aeronautics and Astronautics, Inc., 2012.
  2. -D. Yang, F.-B. Hsiao, and F.-B. Yeh, "Generalized guidance law for homing missiles," IEEE Transactions on Aerospace and Electronic Systems, vol. 25, pp. 197-212, 1989.
  3. Ghawghawe and D. Ghose, "Pure proportional navigation against time-varying target manoeuvres," IEEE Transactions on Aerospace and Electronic Systems, vol. 32, pp. 1336-1347, 1996.
  4. Shiraishi, H. Takano, T. Yamasaki, and I. Yamaguchi, "A Study on the Improvement of Modified Proportional Navigation Guidance," in AIAA Scitech 2019 Forum, 2019, p. 2346.
  5. -J. Ha and S. Chong, "Design of a CLOS guidance law via feedback linearization," IEEE Transactions on Aerospace and Electronic Systems, vol. 28, pp. 51-63, 1992.
  6. -M. Lin, C.-F. Hsu, and Y.-J. Mon, "Self-organizing fuzzy learning CLOS guidance law design," IEEE Transactions on Aerospace and Electronic Systems, vol. 39, pp. 1144-1151, 2003.
  7. H. Zaidi, P. Wu, and A. Bellahcene, "Missile Guidance Law Design via Backstepping Technique," International Journal of Engineering and Applied Sciences, 3, p. 257675, 2016.
  8. Weiss and T. Shima, "Linear quadratic optimal control-based missile guidance law with obstacle avoidance," IEEE Transactions on Aerospace and Electronic Systems, vol. 55, pp. 205-214, 2018.
  9. Chen and J. Wang, "Optimal control based guidance law to control both impact time and impact angle," Aerospace Science and Technology, vol. 84, pp. 454-463, 2019.
  10. Hu, T. Han, and M. Xin, "Sliding-mode impact time guidance law design for various target motions," Journal of Guidance, Control, and Dynamics, vol. 42, pp. 136-148, 2019.
  11. -S. Shin, A. Tsourdos, and K.-B. Li, "A new three-dimensional sliding mode guidance law variation with finite time convergence," IEEE Transactions on Aerospace and Electronic Systems, vol. 53, pp. 2221-2232, 2017.
  12. Hou, Y. Yang, L. Liu, and Y. Wang, "Terminal sliding mode control based impact time and angle constrained guidance," Aerospace Science and Technology, vol. 93, p. 105142, 2019.
  13. Saleem and A. Ratnoo, "Lyapunov-based guidance law for impact time control and simultaneous arrival," Journal of Guidance, Control, and Dynamics, 39, pp. 164-173, 2016.
  14. Binazadeh, M. H. Shafiei, and E. Bazregarzadeh, "New approach in guidance law design based on finite-time partial stability theorem," Journal of Space Science and Technology, vol. 8, 2015.
  15. H. Shafiei and N. Vazirpour, "Robust Three-Dimensional Guidance Law Design against Maneuvering Targets with Approach of Discrete-time Partial Stabilization," Journal of Space Science and Technology, vol. 12, pp. 55-61, 2019.
  16. F. Camacho and C. B. Alba, Model predictive control: Springer science & business media, 2013.
  17. Lu, "Optimal predictive control of continuous nonlinear systems," International Journal of Control, vol. 62, pp. 633-649, 1995.
  18. Talole and R. N. Banavar, "Proportional navigation through predictive control," Journal of guidance, control, and dynamics, vol. 21, pp. 1004-1006, 1998.
  19. Talole, A. Ghosh, and S. Phadke, "Proportional navigation guidance using predictive and time delay control," Control Engineering Practice, vol. 14, pp. 1445-1453, 2006.
  20. Li, Y. Xia, C.-Y. Su, J. Deng, J. Fu, and W. He, "Missile guidance law based on robust model predictive control using neural-network optimization," IEEE transactions on neural networks and learning systems, vol. 26, pp. 1803- 1809, 2014.
  21. He and D. Lin, "Guidance laws based on model predictive control and target manoeuvre estimator," Transactions of the Institute of Measurement and Control, vol. 38, pp. 1509-1519, 2016.
  22. He, W. Wang, and J. Wang, "Three-dimensional impact angle guidance laws based on model predictive control and sliding mode disturbance observer," Journal of Dynamic Systems, Measurement, and Control, vol. 138, 2016.
  23. -H. Chen, D. J. Ballance, and P. J. Gawthrop, "Optimal control of nonlinear systems: a predictive control approach," Automatica, vol. 39, pp. 633-641, 2003.
  24. J. Craig, Introduction to robotics: mechanics and control: Pearson Educacion, 2005.
  25. C.-D. Yang and C.-C. Yang, "Analytical solution of three-dimensional realistic true proportional navigation," Journal of guidance, control, and dynamics, vol. 19, pp. 569-577, 1996.