نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

2 کارشناسی ارشد، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

چکیده

هدف از ارائه این مقاله، معرفی روش طراحی سیستمی و بهینه سازی عملکرد نازل آیروسپاک برای شرایط مختلف هوایی- فضایی می باشد. برای این منظور، برخی از پارمترهای مهم ساختار نازل آیروسپاک و آزمون های شرایط جریان سرد در بهینه سازی نازل مورد مطالعه قرار می گیرد. در این مقاله، برای بهبود مشکلات ساختاری، ساختار نازل آیروسپاک پیشنهاد می شود. در ادامه، روش های طراحی نازل آیروسپاک و معادلات حاکم بر آن تشریح و مدل طراحی پیشنهادی توصیف می شود. بر همین اساس، طراحی یک نازل کامل با آیروسپاک صورت می پذیرد و با یک نمونه طراحی شده موجود صحه گذاری می شود. معیار مقایسه و بهینه سازی، عدد ماخ جریان خروجی می باشد. نتایج در این مقایسه نشان می دهد که بهینه ترین نازل آیروسپاک از نظر کارآیی، نازل با برش 40% می باشد که برهمین اساس نمودارها و کانتورهای جریان مربوط به این نازل آیروسپاک ارائه و صحه گذاری شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

System Design and Simulation of Air-Spacecraft Aerospike Nozzle by Utilizing the Computational Fluid Dynamics (CFD) Method

نویسندگان [English]

  • Hassan Naseh 1
  • Ali Alipoor 2

1 Assistant Professor, Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

2 M.Sc., Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

چکیده [English]

The main purpose is to introduce the performance system design and optimization method of aerospike nozzle for different aero-space conditions. For this purpose, some of the important parameters of the aerospike nozzle structure and cold flow condition tests in the nozzle optimization are studied. The methods of designing the Aerospike nozzle and its governing equations are described and the proposed design model is described and important factors are expressed in this type of nozzle. therefore, the design of a complete nozzle is made by aerospike and is supported by an existing design sample. Then, in order to optimize the nozzle, three cuts of 20%, 40% and 60% of the nozzle end are analyzed. The standard for comparison and optimization in these three slices is the Mach number of the output current. The results of this comparison show that the most efficient aerospike nozzle is a 40% cut nozzle based on the flow charts and contours of this aerospace nozzle.

کلیدواژه‌ها [English]

  • Aero-spike nozzle
  • Flow contour
  • Height variations
  • Fluid modeling
  • Satellite launch Vehicle(SLV)
[1]  R. Varvill and A. Bond, "A comparison of propulsion concepts for SSTO reusable launchers," Journal-British  Interplanetary Society, vol. 56, no. 3/4, pp. 108-117, 2003.
[2]  M. Mirshams , H. Naseh, Space Launch System Conceptual Design, K. N. Toosi University of Technology Publisher, Book under review, 2020 (in Persian).
[3]  U. Olsson, "Aerospace Propulsion from Insects to Spaceflight," published Heat and Power Technology, KTH, Stockholm, Sweden, 2nd Edition, p. 17, April 2012.
[4]  T. Tomita, N. Kumada, and A. Ogawara, "A conceptual system design study for a linear aerospike engine applied to a future SSTO vehicle," in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 2010, p. 7060.
[5]  C.-H. Wang, Y. Liu, and L.-Z. Qin, "Aerospike nozzle contour design and its performance validation," Acta Astronautica, vol. 64, no. 11-12, pp. 1264-1275, 2009.
[6]  K. N. Kumar, M. Gopalsamy, D. Antony, R. Krishnaraj, and C. B. Viswanadh, "Design and Optimization of Aerospike nozzle using CFD," in IOP conference series: materials science and engineering, vol. 247, no. 1: IOP Publishing, p. 012008, 2017
[7]  K. Schlee, S. Gangadharan, J. Ristow, J. Sudermann, C. Walker, and C. Hubert, "Advanced method to estimate fuel slosh simulation parameters," in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, p. 3596.
[8]  M. He, L. Qin, and Y. Liu, "Numerical investigation of flow separation behavior in an over-expanded annular conical aerospike nozzle," Chinese Journal of Aeronautics, vol. 28, no. 4, pp. 983-1002, 2015.
[9]  Q. Xiao, H.-M. Tsai, and D. Papamoschou, "Numerical investigation of supersonic nozzle flow separation," AIAA journal, vol. 45, no. 3, pp. 532-541, 2007.
[10] A. Gross and C. Weiland, "Numerical simulation of separated cold gas nozzle flows," Journal of propulsion and power, vol. 20, no. 3, pp. 509-519, 2004.
[11] A.-S. Mouronval and A. Hadjadj, "Numerical study of the starting process in a supersonic nozzle," Journal of propulsion and power, vol. 21, no. 2, pp. 374-378, 2005.
[12] N. Jourdaine, N. Tsuboi, K. Ozawa, T. Kojima, and A. K. Hayashi, "Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle," Proceedings of the Combustion Institute, vol. 37, no. 3, pp. 3443-3451, 2019.
[13] E. L. Lash, "Trajectory analysis and comparison of a linear aerospike nozzle to a conventional bell nozzle for SSTO flight" , (Master’s Thesis), University of Tennessee,  2015.
[14] H. Naseh and A. Alipour, "Propellant management device (PMD) design optimization of hydrazine fuel tank," Modares Mechanical Engineering, vol. 17, no. 7, pp. 152-160, 2017.
[15] A. Alipour, "Propellant Management Device (PMD) System Design Methodology in Zero Gravity Condition," Modares Mechanical Engineering, vol. 18, no. 2, pp. 84-94, 2018.
[16] H. Naseh, A. Alipour, and P. Daneshgar, "Modeling and Simulation of Fuel Sloshing in Tank by Pendulum Model," Modares Mechanical Engineering, vol. 19, no. 8, pp. 2001-2011, 2019.
[17] C. Lee and D. Thompson, "Computation of plug nozzle contours by the Rao’s optimum thrust method," NASA CR-21914 R-61, 1963.