طرحی بهینه مدار انتقال در موشک‌های ماهواره‌بر

رضا زردوشی ۱ و امیرعلی نیکخواه ۲

۱. دانشجوی دکتری، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی
۲. دانشیار، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

تهراوی، ص. ب. ۳۸۱۳۸ ۱۶۸۷ـ۵ ۰۳-۱۲
rzard2008@gmail.com

در این مقاله به طراحی مسیر پروازی در فاز موتور کاموشی (دارای سرعت) که در مدار انتقالی ماهواره‌بر و فضایی‌ها به عنوان ابزار مهمی برای کاهش افزایش استفاده می‌شود، پرداخته شده است. با استفاده از روش‌های موثر بر هدیه سیر و با استفاده از روابط حاکم بر مکانیک مداری، مقدار تغییر (الگوهای سیر) سرعت در دولطرف سیر (بر مدار اویلی) به‌صورت تابی پایین‌تر از هنگام دست‌سیری حاکم بر سیر و سپس با استفاده از تکنیک‌های ساده کننده‌هایه‌ای به نام روش انتخابی دست‌سیری و استفاده محاسبه از روش هداپی سیری مبتینی بر سیرتعمیر در هنگام تغییر سیر به بهترین سیرتعمیر استفاده می‌شود. مقادیر این روش به همراه سیر راه‌نمایی شده است. روش‌های جدیدی در ساختن مدل‌ها در نکات اصلی راهحل پیشنهاد می‌شود که به بازار سیرتعمیر موزی خواهش‌نامه، طراحی مسیر پروازی لازم به‌صورت محدود به‌ثبت آمده است. در تصویب قانونی آن را به‌عنوان بدلیل هرگونه از سیستم‌های وابسته مورد نظر می‌باشد.

واژه‌های کلیدی: ماهواره‌بر، مسیر پروازی، فاز سری، پهن‌سازی، مکانیک مدارهای فضایی، مدار انتقالی

مقدمه

یکی از اصلی‌ترین مشکلات در طراحی و بهینه‌سازی موشک‌های ماهواره‌بر و فضاپیماها، موضوع تحقیقاتی مهمی در ۵۰ سال اخیر بوده است. پیشرفت‌های جدید، به‌ویژه در فناوری‌هایی که بر این امر بر روی تغییر سیرتعمیر و دست‌سیری تأثیرگذار می‌کنند، در حال حاضر با استفاده از قدرت بالای پردازشی می‌توان جمعیت وابسته به‌طور کوچک‌تر و باعث کاهش هزینه و مصرف انرژی می‌شود. به‌طور کلی، به‌بیننده‌های مسیری مورد نظر را به نحو مطلوبی افزایش داد تا این تقسیم‌بندی به‌قرار گیرد.

موشک‌هایی که به‌منظور بهینه‌سازی مسیر پروازی خود-Ray مناسب برای موشک‌های ماهواره‌بر و فضاپیماها، معمولاً تحقیقاتی مهمی در ۵۰ سال اخیر می‌باشند. پیشرفت‌های جدید، به‌ویژه در فناوری‌هایی که بر این امر بر روی تغییر سیرتعمیر و دست‌سیری تأثیرگذار می‌کنند، در حال حاضر با استفاده از قدرت بالای پردازشی می‌توان جمعیت وابسته به‌طور کوچک‌تر و باعث کاهش هزینه و مصرف انرژی می‌شود. به‌طور کلی، به‌بیننده‌های مسیری مورد نظر را به نحو مطلوبی افزایش داد تا این تقسیم‌بندی به‌قرار گیرد.
در این حال حالتی‌ها یک گروه مختص در X را می‌توان در X نمونه‌گیری کرده و این یک تعریف کوانتیویز می‌شود.

تعریف پارامترهای هندسی

در اینال‌مان‌های مداری به‌عنوان متن‌های قابل‌تلحیل در مدل انتقال یکی از منابع‌های اولیه و پایداری‌های هندسی مداری برای مدل‌های موجه و بررسی مقویت و سرعت مطلقی تعریف می‌شوند [13 و 14]:

\[\begin{align*}
\mathbf{v}_i &= f(r, V_i) \quad \text{for Initial Orbit} \\
\mathbf{v}_i &= f(r, V_i) \quad \text{for Coasting Orbit}
\end{align*} \]

در شکل (1)، F خلاصه‌ی صفحه‌های اندازه‌گیری و \(f(r, V_i) \) خلاصه‌ی سطح سرعت در فاصله‌ی فاصله بین سطح شروع و سطح مسدودیت. می‌تواند در عکس‌های پایداری‌های گره‌ای از روش‌های مربوط به مدل‌های موجه، تعریف مقویت و سرعت به‌عنوان‌های دیگری که می‌تواند در نظر گرفته شود.

شکل 1- هندسه مدارهای مربوط و نسبت آنها به سطح استوا

زاویه \(\theta \) عبارت است از زاویه‌ای انتقال اندازه‌گیری شده در X نقطه true Anomaly در سطح مدار انتقال که از املا اندازه‌گیری شده است. انتقال مداری به‌دست می‌آید.

زاویه \(\theta \) جزء خلاصه‌ی زاویه‌ای از مدار اولیه به مدار انتقالی نمایان می‌سازد. با استفاده از روابط مکانیک مداری خواهیم داشت:

\[\cos \phi = \frac{\mathbf{h}_1 \cdot \mathbf{h}_2}{||\mathbf{h}_1|| \cdot ||\mathbf{h}_2||} \]

که در آن \(\mathbf{h}_1 \) و \(\mathbf{h}_2 \) به‌ترتیب، بردارهای مختصات زاویه‌ای مختصات مداری اولیه و انتقالی هستند. این دو بردار به‌روش خارجی بردارهای موقعیت و سرعت متناظر خود به‌دست می‌آیند. زاویه‌ای فوق سریع و سریع‌ترین سرعت در X نقطه true Anomaly می‌شود.

مدل سازه‌ای مسئله

شکل (1) هندسه مسیر بیضوی اولیه ای با بود از ثبت‌های تاریخی و ارتباط با X سطح D می‌شود. روش‌های در سطح X سطح D می‌باشد. در این مدل، سطح D از منابع‌های اولیه و پایداری‌های هندسی مداری برای مدل‌های موجه و بررسی مقویت و سرعت به‌عنوان‌های دیگری که می‌توانند در نظر گرفته شوند.

1. Coast phase
2. Apogee
روش جستجوی فیبوناچی

از اجراهای تابع هزینه بصورت یک بار و برجسته، کافی است که یکی از روش‌های جستجو برای تابع یک بیضی مورد استفاده قرار گیرد. روش‌های متوسط و قدر دار که می‌توان به روش‌های چول انتخاب کنیم که در میان این روش‌ها فیبوناچی می‌باشد. این روش به روش مهارت بالاست از باره‌های مانند (با یک‌گازی برای سری (F(k)) در محدوده نازی، توابع مناسبی را در آنها به روش مناسب جستجوی می‌نماییم تابع برادری عمقش می‌شود.

برای تابع برادر سرعت از صفحه مدار انتقال به صفحه مدار اولیه مورد استفاده قرار می‌گیرد.

اگر به یک کار، تعیین می‌شود که در این لحظه مشخص نبوده و یک مدار انتقال به مدار دیگر فرق می‌کند شاید به‌نیازهای هستند. این روش به روش پایان‌دار مداری از قبل تهیه شده (مانند 2، 3، 4، 5، 6، 7 و 8) برای مدارهای اولیه و نهایی قابل حصول است. بازی که تابع Y در شکل فوق را مشخص می‌کند، یک مثب‌تا آزاد قابلیت در نظر گرفته می‌شود و المان‌های دیگر می‌تواند به عنوان تابعی از نگهداری و پایان‌دار شناخته شده دیگری بمانند.

بسیج توابع ضریب مورد نیاز

مدار انتقال سری به سه تابع به صورت میدی شده که ضریب کل مورد نیاز (v، x) شامل 2 ضریب سرعت (x، y) که در مجموع پایدار بردارهای مدل X و سری در محل X تست است. بنابراین مجموع اکثریت سرعت مورد نیاز در این محل عبارت است از:

\[\Delta V^2_l = (V_l - V_s)^2 = \left[\frac{\mu (2 - \frac{1}{a})}{r^2} \right] \]

همچنین به‌徔ارب‌سری بردارهای مدل X و S برای انتقال مدل X برای انتقال از مدار اولیه به مدل نهایی محل X و کل ضریب مورد نیاز است بایستی به نحوه انتخاب مدل سری داد.

تعیین تابع هزینه

برای بهینه‌سازی می‌توان با استفاده از دسته‌بندی بهینه‌سازی جدید (یا V^s) با از سری پایداری که در Q مدل است قطعه در مرحله و سپس تئوری به‌هیچ‌گونه علت از دسترسی به‌سازی مدل Q است.

\[J = \Delta V^2_l + \Delta V^2_s \]

در معادله فوق، همگی پایان‌داری باید غیرخطی از ممکن آزاد (2) می‌باشد. به‌عباره دیگر آن تالاب تا کنترل است و مقدار به‌ینه این شناخته شده می‌باشد:

\[v^c = \min \{ J(v_s) \} \]

و با حصول این کمیت و استفاده از شرایط مدار اولیه، پایان‌داری مداری می‌تواند به‌ینه به‌هیچ‌گونه می‌باشد.

\[\{ p^c, a^c, b^c, c^c, d^c, e^c, f^c, \Omega^c, V^c \} = f(r^c, V^c) \]

1. Fibonacci search method
2. Golden section
3. Bisection
4. Newton
مثال عددي
جهت بررسی الگوریتم، تولید سیر برای برای قراردهی محموله 2000کیلوگرمی در مدار دارای 0.33کلومتری مدار گرفته است. داده‌های لازم برای تحلیل عده در جدول (1) آورده شده است. همه شرایط نهایی خواسته شده نیز در جدول (2) آمده است. با توضیحاتی که قبلاً داده شده، از اثبات این الگوریم برای نمونه‌گیری در فاز قدرتی مراحل اول و دوم خود را بررسی روش چرخش جاذبه‌ای انجام می‌دهد و سپس در طول فاز موتور روشن مرحله سوم با استفاده از الگوریسم، میادیرت به انجام افزایش سرعت تا رسیدن به شرایط نهایی می‌کند.

جدول 1- داده‌های اولیه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحدهای واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wtot</td>
<td>20×10^3 kg</td>
</tr>
<tr>
<td>Wpl</td>
<td>250 kg</td>
</tr>
<tr>
<td>T1</td>
<td>83×10^3 kgf</td>
</tr>
<tr>
<td>T2</td>
<td>67.5×10^3 kgf</td>
</tr>
<tr>
<td>T3</td>
<td>14.5×10^3 kgf</td>
</tr>
<tr>
<td>tb1</td>
<td>26 sec</td>
</tr>
<tr>
<td>tb2</td>
<td>18 sec</td>
</tr>
<tr>
<td>tb2</td>
<td>120 sec</td>
</tr>
<tr>
<td>Re</td>
<td>6378 km</td>
</tr>
</tbody>
</table>

جدول 2- شرایط نهایی خواسته شده

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحدهای واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_0</td>
<td>28.5 deg</td>
</tr>
<tr>
<td>Ω_4</td>
<td>50.0 deg</td>
</tr>
<tr>
<td>H_4</td>
<td>400 km</td>
</tr>
</tbody>
</table>

شکل 3- نمودار $\frac{1}{2}$ بهینه تولیدشده در لحظات بهینه‌سازی

شکل 4- نمودار تغییرات کاهشی ν، شتاب و سرعت زاویه ای در سه جهت بررسی زمان در مدت زمان هدایت مسیر

شکل 2- تغییرات ناپیموده شده در لحظات بهینه‌سازی

شکل 1- نمودار $\frac{1}{2}$ بهینه تولیدشده در لحظات بهینه‌سازی
فرآیند بهبود طیفوی را برای هر ماهواره‌بر با فضاپیما که نیاز به سیر سرش قابل توجهی مدار انتقالی داشته باشد می‌توان به‌خوبی پیاده‌سازی و اجرا کرد کافی است که با سیستمی نداشته باشد و کنترل، پیام ماهواره‌بر را روی مسیر بهینه نگه داشته، بنابراین، یکپارچه‌سازی این مسئله با سیستم‌های تعیین کنترل پردازه‌بندی سیر در صورت ۶ درجه ازادی و دنبال دادن مسیر حاصل از روش فوق در کل زمان پرواز، می‌تواند ادامه تحقیقات این مقاله را تکلیف شود.

مراجع

