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Remote sensing using small spacecraft arising from multi-objective economic activity 
problems is getting more and more developed. These satellites require very accurate 
pointing to specific locations of interest, with high reliability and small latency. The space 
borne imaging systems always attempted to achieve the highest ground resolution 
possible with the available technology at the given time. Also mass, volume and power 
consumption of the spacecrafts and instruments followed the trend to miniaturization. But 
the most promising prospects for high resolution imaging with remote sensing satellites 
are connected with passive optical systems, especially push broom systems. In this paper 
optical system design process is described and different parameters of this process such 
as MTF, SNR, FOV, aperture diameter, stability and pointing, scanning schemes, detector 
selection, and target radiance are simulated and analyzed. 
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     Introduction1234

High resolution mapping systems follow the trend to 
smaller Ground Sample Distances (GSD). The 
increasing number of space borne imaging systems in 
the last decade (see [1] for more) shows that an 
increasing number of countries are dealing with space 
borne technology and that there is an increasing need 
for mapping systems for different applications [2]. 
The trend to smaller GSDs was and is supported by 
the improvements in diverse fields of technology for 
instance optics, mechanics and materials, electronics, 
signal processing, communication and navigation. 
Active micro wave systems, e.g. SAR systems, are an 
alternative to passive optical mapping systems. They 
also benefit from the technology improvements. But 
the most promising prospects for high resolution 
mapping with small satellites are connected with 
passive optical systems, especially push-broom 
systems. High resolution optical systems on small 
satellites have to overcome a couple of problems. In 
this paper we consider a GSD of 10 m or less as high 
resolution, and a satellite with 1000 kg or less mass 
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as a small satellite according to the IAA Study Cost-
Effective Earth Observation Missions [3].  

Smaller GSD needs larger focal lengths. The 
physics behind optical systems allows only a restricted 
number of tricks to overcome the problems of large 
focal length optics in terms of volume and mass. The 
size of the focal plane depends on the detector system 
size and is part of the equation concerning optics 
volume and mass. The pointing stability is said to be 
too low using small satellites. What are the 
requirements and restrictions? The large amounts of 
date of high resolution imaging systems need to be 
stored and transmitted using high performance 
devices. Size, mass and power consumption of those 
devices increases with increasing data volumes and 
data rates. High resolution means also to deal with 
small amounts of energy coming from small ground 
pixels to be registered in small integration time periods 
according to the high satellite orbit velocities. So, the 
question is how far can we go with decreasing the 
GSD (increasing the ground resolution) using small 
satellites? 

Civil space borne Earth surface mapping started 
in 1972 with an 80 m GSD provided by ERTS, later 
renamed to Landsat-1. Nowadays, the GSD 
approaches 1 m or even less. The electro-optic 
complex is intended for a panchromatic and 
spectrozonal survey of Earth surface. Cameras provide 
reception of optical radiation from Earth surface and 
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Coma
Associated mainly with parabolic reflector telescopes 
which affect the off-axis images and are more 
pronounced near the edges of the field of view. The 
images seen produce a V-shaped appearance. The 
faster the focal ratio, the more coma that will be seen 
near the edge although the center of the field 
(approximately a circle, which in mm is the square of 
the focal ratio) will still be coma-free in well-designed 
and manufactured instruments. 

Astigmatism 
A lens aberration that elongates images which change 
from a horizontal to a vertical position on opposite 
sides of the best focus. It is generally associated with 
poorly made optics or collimation errors. 

Distortion 
The alteration of the original shape (or other 
characteristic) of an object, image, sound, waveform or 
other form of information or representation. These 
distortions are minimized by using symmetric doublets. 

Field Curvature 
Caused by the light rays not all coming to a sharp 
focus in the same plane. The center of the field may be 
sharp and in focus but the edges are out of focus and 
vice versa. 

Design of Electro-Optical System 
Parameters 

Optical System Design Process consists of: 
1. Determine Instrument Requirements 
2. Choose preliminary aperture 
3. Determine target radiance 
4. Select detector candidates 
5. “Optical Link Budget”, SNR considerations 
6. Determine Focal Plane architecture and scanning 

schemes
7. Select F# and telescope/optical train design 
8. Complete preliminary design and check MTF 
9. Determine ACS requirements 

Determine Instrument Requirements 
The choice of the short-wave (left) border of the 
panchromatic band is generally conditioned by factual 
peculiarities of the atmosphere.  

Figure (3) shows that the Earth surface 
illumination when =0.4μm is almost 30 percent, less 
than when =0.5μm, and the atmospheric fog 
brightness is 10 – 15 per cent more and atmospheric 
fog brightness for different Sun angles above horizon. 
The atmospheric fog influences the quality of images 
received, as it reduces the general contrast of the 
image and the signal/noise relation. This leads to the 
details of low contrast at the image.  

Fig. 3. Light exposure of a terrestrial surface ( ), W/m2

Another important reason for the choice of the 
short-wave border of the panchromatic band 0.5 μm 
is difficulty in the objective achromatization in the 
spectral band from 0.4 to 0.5 μm because it requires 
usage of the special ultraviolet glass which makes 
optical system much more complicated. 

The choice of the long-wave (right) border of the 
panchromatic band rides on the physical peculiarities 
of the CCD causing the deterioration of the modulation 
transmission function in the long-wave band due to 
generating of the carrier inside of silicon. 

The deterioration of the MTF of the multiple-unit 
linear photo transmitter is caused by the fact that the depth 
of photon absorption depends on longer waves. Figure (4) 
shows how the absorption factor depends on wave length 
and the energy of the photons of pure silicon. The 
absorption factor is a possibility of photon absorption per 
unit of length of the way made by light inside the 
substance. Thus the depth of photon absorption has inverse 
relationship with the absorption factor. If photons are 
absorbed outside of the depleted area, the probability of 
gathering the generated charge by the appropriate sensitive 
element falls as far as charge moves by diffusion. This 
leads to the total MTF deterioration. 

Fig. 4. Photon absorption in CCD 
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Note that a good design requires proper matching of 
system and cold-shield solid angle. Hence, requires wcs
,wsys, with 

                                              

                                             (11) 

Expressions evaluating the noise equivalent 
irradiance for signal, background, optical train, field-
stop, and cold shield follow. 
Signal: 

]/[)()( 22

1

smphdL
hcA

fwk

A
fk

n

s
dd

sd

s
dd

d
s           (12) 

Where )(x  is the system transmission,  f  is the 
noise equivalent bandwidth in Hertz of the band, and is 
normally given by 1)2(f ,  effective 

integration time (single sample or multiple time delay and 
integrate samples may be used), dA  the detector area, 

and dk the noise process scale factor ( 2dk for a 
photovoltaic and 4dk  for photoconductor). 

Background: 

]/[)()( 22

1

smphdL
hcA

fwk
n bg

dd

d
bg

     (13) 

Optical train: 
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Where each optical element or optical subsystem, 
i=1,2,3,…,n contributes to the near-field thermal 
exitance 

opM . Note how the remaining optical 
transmission from the ith component to the detector 
surface is maintained by dividing the system 
transmission )(x  by the ith component of 0T . In many 
cases, especially when designing a new system, a priori 
knowledge of the number, position, temperature, and 
material properties of the optical elements is 
unavailable. However, an opn  budget can be 
allocated by approximating the thermal exitance with a 
single source, 
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Typically, an KTopop 300@1.005.0  will 
suffice for uncooled optics, where 

op
 is the effective 

emissivity, and ][ KTop
 is the effective temperature. 

Field stop: 
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Cold-shield: 
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The exitance functions, fsop MM ,  and csM  are of 

the form 
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2

2

mWdehcdTM Tk
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b

        (18) 

where ]/[10381.1 23 KJkb  is Boltzmann 

constant,  is emissivity, and [ ]T K  is the 
temperature. Signal and background radiances, 

( )L ds
 and 2( ) [ / ]bgL d w m sr , from a given 

scene that include complex transmission, backscatter, 
and emission effects can be generated with computer 
simulation tools such as LOWTRAN or MODTRAN 
by PCModWin 4.0 software. 

When the ADC is matched to the amplifier output 
then 

122N
WELL

dig
Nn                                                    (19) 

where WEELN  is the charge well capacity and N 
number of bits. Ideally, dign  is less than the noise 
floor. This is achieved by selecting a high resolution 
ADC (large N). 

The remaining two noise terms, electronic 
darn  and systematic sysn  will not be pursued 

any further except within the context of establishing a 
synthesis-requirement noise budget based on top-level 
Sensitivity performance requirements ( SNR  analysis). 
Once an darn  budget is defined, a technology-
dependent feasibility study is performed to identify a 
candidate technology that meets the darn  budget. 
If no appropriate candidate is found to fulfill the 
synthesis requirements, the system design is iterated 
until an acceptable compromise between performance 
and synthesis is achieved. As a final observation, note 
that band leakage is a form of systematic noise through 
spectral cross-talk. Note that correlated noise ( f/1 ,
drift etc.) and white noise are not separated in the 

n  terms. When large enough, this type of 
correlated noise must be reduced by system calibration 
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in order to avoid imaging artifacts and/or radiometric 
errors. 

In most common remote sensing sensors, namely 
cameras, the SNR will be in the order of 55 dB, or a 
ratio of 562: 1. That is, the signal is 562 times greater 
than the noise signal. At this ratio the noise will be 
unnoticeable. The following guidelines interpret some 
ratios of signal-to-noise in terms of the subjective 
picture quality.  

Determine Focal Plane architecture and Scanning 
Schemes
There are three different scanning systems for 
acquiring the image (figure 10) [9]: 

Fig. 10. Image Acquisition Modes [9]

 (1) Whiskbroom imagers are working as 
electromechanical scanners. On-axis optics or 
telescopes with scan mirrors sweep from one edge of 
the swath to the other. The FOV of the scanner can be 
detected by a single detector or a single-line-detector. 
Simultaneously the movement of the satellite 
guarantees the sweeping scan over the earth. This 
means that the dwell time for each ground cell must be 
very short at a given IFOV because each scanned line 
consists of multiple ground cells, which will be 
detected. A well-known example of whiskbroom 
imager is AVHRR, Landsat and SeaWiFS. 

(2) Push broom scanners: As electronically 
scanners they use a line of detectors to scan over a two 
dimensional scene. The number of pixels is equal to 
the number of ground cells for a given swath. The 
motion of the satellite provides the scan in along-track-
direction, thus, the inverse of the line frequency is 
equal to the pixel dwell time. By using a two 
dimensional detector, one dimension can represent the 
swath width (spatial dimension, y) and the other the 
spectral range. These imaging spectrometers can be 
subdivided in Wide Field Imagers (MERIS, ROSIS) 
and Narrow Field Imagers (HSI, PRISM). By 
regarding space borne systems these imager-types 
conduce to high or frequent global coverage. 

(3) Staring imagers: these imagers are also 
electronically scanners. They detect a two dimensional 
FOV at once. The IFOV along and cross track 
corresponds to the two dimensions of detector area 

array. Two subgroups of staring imagers are Wedge 
Imaging Spectrometer (WIS) and Time Delay 
Integration Imagers (TDI). If the incoming light passes 
a linear wedge filter each row nX of the ground 
segment is seized by the detector row nX  for a 
determined wavelength. For very high ground 
resolution and low sensitivity applications, nX rows of 
the ground can be traced by using a TDI. The light 
from the scene will be separated by a linear filter for 
spectral band definition. On the 2D-detector the signal 
for this line can be read out from multiple rows caused 
by the forward movement of the sensor. Therefore the 
sensitivity of a TDI with n  rows is n  times that of an 
imager using the push broom principle. 

Push broom scanner is selected because these 
schemes have flowed advantages (see tables 3&4): 

- large Swath width and high resolution feasible 
(depending on pixel number) 

- relatively “long”  dwell time for each pixel 

- high geometric accuracy across the flight direction 

- No movable parts 

Table 3. Comparison of optical sensor scanning methods [9]

Scanning 
technique Advantages Disadvantages 

Whiskbroom 
scanner-
single 
detector  
element 

-High uniformity 
of the response 
function over  
the scene 

- Relatively 
simple optics 

-short dwell time per 
pixel 

-high bandwidth 
requirement and time 
response of the 
detector 

Whiskbroom 
scanner-
multiple 
detector  
elements 

-Uniformity of the 
response 
function over  
the swath 

- Relatively 
simple optics 

-Relatively high 
bandwidth and time 
response of the 
detector 

Pushbroom 
Sensor 

-Uniform 
response 
function in  the 
along-track 
direction 

- Relatively long 
dwell time 

-High number of pixels 
per line imager 
required 

-Relatively complex 
optics 

Step-and-
Stare Imager 
with
Detector 
Matrix 

-well defined 
geometry within 
the image 

- long integration 
time (if motion 
compensation is 
performed) 

-High number of pixels 
per matrix imager 
required 

-complex optics required 
to cover the full image 
size 

-Calibration of fixed 
pattern noise for each 
pixel 

-Highly complex 
scanner required if 
motion compensation 
is performed. 
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Table 4. Characteristics of imagers [12] 

Characteristic LINE 
imager Matrix Imager 

Pixels 6000-9000 Up to 1024 1024
image pixels in 

frame transfer mode 
Photo response 
nonuniformity 

5% 5% 

Dark signal 
nonuniformity 

5% 5% 

Dynamic range 10000 5000 

Select F# and Telescope/Optical Train Design 
Electro - optical system types
A telescope is an instrument designed for the 
observation of remote objects. The term usually refers 
to optical telescopes, but there are telescopes for most 
of the spectrum of electromagnetic radiation and for 
other signal types. For example, optical telescope, 
radio telescopes, X-ray and gamma-ray telescopes [9]. 

Fig. 11. Basic configurations for Refractive and Reflective 
optical systems [5]

Electro-optical systems divided into two 
classifications: reflective systems using specular 
reflection and refractive systems using optical lens 
systems (see figure 11). Reflective system is selected 
because these schemes have flowed advantages: 

1. Only one surface of an optical element has to be 
manufactured with high precision (the mirror) 

2. The backside can be lightweight 
3. High numerical aperture feasible 
4. distortions and optical performance are not 

dependent from the wavelength  
5. Many different materials are suitable for a mirror 

(optical glasses, metals, Zerodur, SiC, etc.) 

Infinity F-number or F-stop is defined as: 
DfF #  (20) 

where D is the aperture or diameter of the system. 
F-number indicates the amount that the lens can 

open up or close down to let in more or less light, 

respectively. The greater the F-number, the less light 
per unit area reaches the image plane of the system. 

Consequently image brightness is proportional to: 
222#1 fDFI    (21) 

 In table 5 electro-optical system types 
advantages and drawbacks are shown. 

Table 5. Electro-optical system types advantages and 
drawbacks [9] 

Optics Advantages Drawbacks 

                       R
efractive  

•Low costs because of 
spherical lens surfaces 
•High image quality and 
strong light signal possible, 
because of no obscuration 
by mechanical elements  
•Inexpensive optic 
adjustment by circular lenses 
and axial locations  
•Diversity of optical lens 
materials allows spectral 
corrections in a wide range 
of applications 
•Stray light suppression by 
simple baffle arrangements 
possible 

•No long focal 
length with high 
aperture numbers 
possible 
•Chromatic 
aberrations at high 
spectral band with 
(> 200nm) have to 
be corrected 

                     R
eflective 

•Only one surface of an 
optical element has to be 
manufactured with high 
precision (the mrror) 
•The backside can be 
lightweight 
•High numerical aperture 
feasible 
•distortions and optical 
performance are not 
dependent from the 
wavelength  
•Many different materials 
are suitable for a mirror 
(optical glasses, metals, 
Zerodur, SiC, etc.) 

•For small Field of 
Views only 

•More expensive in 
manufacturing, 
assembly and 
integration (higher 
precision) 
•Obscuration due to 
supporting elements 
for secondary 
mirror 
•Higher mass and 
volume 
•More stray light 

Selection of light filters: 
Spectral bands of the camera are provided by the 

usage of light filters, each one mounted under its own 
CCD. It was generated taking into account the fact that 
in the gap between the last lens surface and CCD  
plane the camera shielding glass (K108 glass) and the 
CCD shielding glass (K8 glass) were installed. The 
light filter is sprayed on the mat made of radiation-
resistant glass – grade -108.  The main optical filter 
characteristics are listed in table 6 and on the figure 
(12). 

Table 6. Main optical filter characteristics [6] 

…
nm

med 
%

med 
%

0,5 
nm 

0,1 
nm nm nm 

med 
%

max 
%

520…780  60  5 510…790 500…800 300 1100  0,1  0,5 
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MTFPF when for all three components of MTFPF
the rule-of-the-thumb parameters are applied (MTFLM
with aLM = 0.2. x, MTFJ with  = 0.1.x, MTFsin with a 
= 0.1. x). The resulting MTFpf1 equals MTFSR with 
neglected MTFoptics (MTFoptics = 1).  

From an orbit altitude of 600 km, a GSD of 1 m 
equals an IFOV of 1.7 rad or approximately 1/3 of an 
arcsec. During the dwell time, the drift shall be less 
than 20 % of the IFOV resulting in a drift rate of about 
2.4 mrad/s or 8 arcmin/s in order to stay in the limit for 
minimal degradation of the MTF due to drift effects. 
When using the TDI principle to improve the SNR, for 
a 96 step TDI the tolerable drift rate becomes even 25 

rad/s or about 5 arcsec/s! 
 Required stability for imaging satellite is: 

int

1
TH

RStability                                           (38) 

where R and H are resolution and orbit altitude 
respectively. Amount of  for the different resolution 
is shown in table (8). 

The accuracy of pointing is: 

H
S1.0tan 1                                          (39) 

where S is the swath width.  

Table 8. amount in the different resolution 

Resolution (m) 

>500 0.5 
Between 500 and 100 0.33 
Between 100 and 30 0.15 
Between 30 and 5 0.1 

<5 0.01 

Data Volume & Transmission Rate  
The data rate required for observation payloads 
depends on the resolution, coverage area, amplitude 
accuracy, and number of sensors. When the satellite is 
in low-Earth orbit, the satellite motion itself allows 
easy scanning of the Earth in the orbit plane. A 
separate mechanism in the sensor scans perpendicular 
to the orbit plane. The sensor generates an image 
composed of minimum resolvable elements called 
pixels. If the resolution element's diameter on the 
ground is d  meters, directly below the satellite, the 
pixel size is hd /  radians, where h is the satellite's 
altitude. The width of the sensor's scan angle, 
perpendicular to the satellite orbit, is x  also in radians [9].  

The data rate, DR, generated by the sensor is:  

sbits
qd
hsbVDR Nx /2

                   (40)

Where 
NV : satellite's ground-track velocity, x : width 

of the sensor's scan, perpendicular to satellite's orbit 
(radians), d : minimum diameter of pixel image 

projected on the ground, h :  satellite's altitude, s :
number of samples per pixel (typically 1 to 2), b :
number of bits per sample ( b2  amplitude levels), q :
frame efficiency, fraction of time for data transmission 
(typically 0.90 to 0.95). 

Mass, Volume, Power Consumption 

Microelectronics 
Since the launch of Landsat-1 in 1972, the progress in 
microelectronics has enabled more sophisticated 
instrument designs. The developments for the MESUR 
Network Mission may serve as an example, how much 
microelectronics technology may influence the overall 
mission design. The MESUR (Mars Environmental 
Survey) Network Mission concept consisted of up to 
16 small spacecraft (that time planned to be launched 
in 2001). As often in extraterrestrial missions, there 
was a pressure to miniaturization by need. Reference 
mission was the MESUR Pathfinder Mission, one of 
the first missions under NASA’s Discovery program 
of smaller, low-cost missions to be launched 1997.  

In [3] the benefits have been assessed which may 
occur when the electronics technology used in the 
MESUR Pathfinder mission is replaced by advanced 
microelectronics technology. The MESUR Network 
study team found out that advanced microelectronics 
packaging technologies could be applied to the 
implementation of subsystem functions for  

- The Attitude and Information Management System 
AIMS  

- The Radio Frequency Subsystem RF  
- The Power and Pyro Subsystem PP.  

As a result, a factor of three or better reduction in 
mass, volume, and power consumption were projected 
relative to the MESUR Pathfinder baseline (see table 9).  

Table 9. Projected total reduction in mass, volume, and power 
consumption for MESUR Network in comparison to MESUR 

Pathfinder [10]

Pathfinder Network Next Reduction Fractional 

Mass 47 Kg 11 Kg 36 Kg 4.3x 

Volume 46 dm3 6.5 dm3 39.5 dm3 4.1x 

Power 74 W 26 W 49 W 2.9x 

The key to realize these reductions lies in the 
utilization of industry- based advanced microelectronics 
packaging technologies, including:  

- Multichip module (MCM) technology  
- Three-dimensional MCM stacking  
- Die stacking for memory.  

The leverage of these reductions to the spacecraft is 
obvious. The advanced microelectronics packaging 
technologies have been widely used for instance in a joint 
NASA/DLR study for the ROSETTA lander carrying 
among other cameras a stereo camera with 10 mm GSD 
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Table 11. The designing result of a panchromatic camera, 
Continuance 

Main wavelength, m 0.5893 
Angular field of view (2 ), degrees 12 
Distortion, % < 0.1 
Integral light transmission factor >80% 
Field of view illumination change, % < 5 
Pointing, degree  < 0.4  
Stability, degree/second < 0.08 

Conclusion 

This paper showed the problems connected with the 
imaging payload design. In this context the paper deals 
with such important parameters for imaging payload 
for remote sensing satellites like spatial resolution, 
MTF, signal, SNR, pointing accuracy and stability.  

The systematical design and performance 
evaluation of the Imaging Payload for the remote 
sensing satellite technology has been described. It was 
done based on top-level customer system performance 
requirements and proposed approach for this purpose 
is based on SNR (detection) and MTF (resolution) 
analysis. The Imaging Payload was designed as a push 
broom scanner flying in a sun-synchronous polar orbit 
of 700 Km altitude and resolution of 50 meter.  
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