نویسندگان

دانشکده خواجه نصیرالدین طوسی - دانشکده هوافضا

چکیده

در این پژوهش مکانیزم احتراق اکسیژن گازی بر روی سطح سوخت جامد HTPBمطالعه شده است. به منظور شبیه‌سازی جریان محترق، معادلات ناویر- استوکس و انتقال اجزای شیمیایی با استفاده از روند ضمنی LU-SWحل شده است. مدل‌سازی این نوع فرآیند احتراقی نیازمند شناخت پدیدة پیرولیز در سطح سوخت جامد است. مطالعات تجربی صورت گرفته در این زمینه بیانگر آن است که جزء شیمیایی C4H6عمده محصول گازی حاصل از فرآیند پیرولیز است. به‌منظور تعیین نرخ تولید محصولات گازی حاصل از فرآیند پیرولیز، از یک رابطة تجربی استفاده شده است که خود تابع دمای سطح سوخت است. دمای سطح سوخت را نیز می‌توان با نوشتن معادلة انرژی در سطح مشترک گاز– جامد محاسبه کرد. مکانیزم احتراق بین اکسیژن گازی و هیدروکربن C4H6توسط دو مدل سینتیک شیمیایی شبه کلی توصیف شده است. نتایج نشان می‌دهند که مشخصه‌های اصلی جریان محترق مثل دمای شعله و کسر جرمی محصولات به شدت به مدل سینتیکی درنظرگرفته شده وابسته‌اند. در نهایت، نتایج حاصل از مد‌‌ل‌سازی بر اساس هر دو مدل سینتیک شیمیایی ارائه شده و نرخ پسروی سطح سوخت جامد با دیگر نتایج عددی مقایسه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

An Investigation on the Effect of Chemical Kinetics Mechanisms in the Modeling of Combustive Gaseous Oxidizer Flow on a Solid Fuel Surface

نویسندگان [English]

  • M. Ahangar
  • R. Ebrahimi

چکیده [English]

In this study, the combustion process of gaseous Oxygen on the surface of HTPB solid fuel has been investigated. To simulate the chemically reactive flow, Navier-Stokes equations and species transport equations were solved using LU-SW implicit scheme. Modeling this kind of combustion process demands a deep understanding of the pyrolysis phenomenon on the solid fuel surface. Experimental studies conducted in this field show that the main gaseous product of the pyrolysis process is C4H6. An experimental equation which is dependent to the temperature of the fuel surface is used to determine the gas production rate during pyrolysis process. The temperature of the fuel surface can be obtained by applying energy equation in gas-solid interface. The combustion process of gaseous Oxygen and C4H6 has been described by two quasi-global chemical kinetics models. According to the obtained results, the main characteristic parameters of combustive flow such as the flame temperature and mass fraction of chemical species are strongly affiliated to the applied chemical kinetic model. Finally, the results of modeling based on two different models of chemical kinetics are presented and solid fuel surface regression rate is compared with other numerical results.

کلیدواژه‌ها [English]

  • hybrid combustion process
  • Numerical modeling
  • regression rate
  • solid fuel pyrolysis
  • chemical kinetics model
[1] Sutton, G. P., Rocket Propulsion Elements, 7th Edition., John Wiley & Sons, New York, 2001.
[2] Marxman, G. and Gilbert, M., “Turbulent Boundary Layer Combustion in the Hybrid Rocket,” Ninth International Symposium on Combustion, pp. 371-383, New York, 1963.
[3] Omori, S., Hybrid Combustion with Surface Pyrolysis, Institute of Space and Aeronautical Science, Uiversity of Tokyo, Report No. 450, 1970.
[4] Chiaverini, M. J. and Kuo, K. K., Fundamentals of Hybrid Rocket Combustion and Propulsion, AIAA Publication, 1st Edition, 650 page,  2007.
[5] Estey, P., Altman, D. and McFarlane, J., “An Evaluation of Scaling Effects for Hybrid Rocket Motors,” AIAA/SAE/ASME 27th Joint Propulsion Conference, Sacramento, June 24-26, 1991.
[6] Smoot, L. D. and Price, F. C., “Regression Rate of Nonmetalized Hybrid Fuel Systems,” AIAA Journal, Vol. 3, No. 8, pp. 1408-1413, 1965.
[7] Muzzy, R. J., “Applied Hybrid Combustion Theory,” Proceedings of the 8th AIAA/SAE Joint Propulsion Specialist Conference, New Orleans, Louisiana, USA, November-December 1972, Paper No. 72 1143.
[8] Chiaverini, M. J., Kuo, K. K., Peretz, A. and Harting, G. C., “Regression Rate and Heat Transfer Correlations for HTPB/GOX Combustion in a Hybrid Rocket Motor,” AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 34th, Cleveland, OH, July 13-15, 1998.
[9] Cheng, G. C., Farmer, R. C., Jones, H. S. and McFarlane, J. S., “Numerical Simulation of the Internal Ballistics of a Hybrid Rocket Motor,” 32nd Aerospace Sciences Meeting & Exhibit, Reno, 1994.
[10] Liang, P. Y., Ungewitter, R. J. and Claflin, S. E., “CFD Analysis of the 24-Inch JIRAD Hybrid Rocket Motor,” 31st AIAA ASME/ SAE / ASEE Joint Propulsion Conference and Exhibit, Sandiego, 1995.
[11] Venkateswaran, S., and Merkle, C. L., “Size Scale-up in Hybrid Rocket Motors,” AIAA 34th Aerospace Sciences Meeting and Exhibit, AIAA-96-0647, Reno, Jan 15-18, 1996.
[12] Serin, N. and Gogus, Y. A., “Navier-Stokes Investigation on Reacting Flow Field of HTPB/O2 Hybrid Motor and Regression Rate Evaluation,” 39th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 20-23 July 2003.
[13] Lung Lin, J., “Two-Phase Flow Effect on Hybrid Rocket Combustion,” Acta Astronautica, Vol. 65, Issue 7-8, pp. 1042-1057, March 2009.
[14] آهنگر، مهدی، ابراهیمی، رضا و غفوریان، اکبر. «مدل‌سازی فرآیند احتراق HTPB/O2 در یک موتور موشک هیبریدی به منظور تعیین نرخ پسروی سطح سوخت جامد،» نشریه علمی- پژوهشی سوخت و احتراق، سال دوم، شماره دوم، پاییز و زمستان 1388.
[15] Cohen, N. S., Fleming, R. W. and Derr, R. L., “Role of Binders in Solid Propellant Combustion,” AIAA Journal, Vol. 12, Issue 2, pp. 212-218, Feb, 1974.
[16] Chiaverini, M. J., Harting, G. C., Lu, Y. C., Kuo, K. K. and Peretz, A., “Pyrolysis Behavior of Hybrid-Rocket Solid Fuels Under Rapid Heating Conditions,” Journal of Propulsion and Power, Vol. 15, No. 6, pp. 888-895, Nov.-Dec. 1999.
[17] Arisawa, H. and Brill, T. B., “Flash Pyrolysis of Hydroxyl-Terminated Polybutadiene (HTPB) I: Analysis and Implications of the Gaeous Products,” Combustion and Flame, Vol. 106, Issue 1-2, pp. 131-143, 1996.
[18] Arisawa, H. and Brill, T. B., “Flash Pyrolysis of Hydroxyl-Terminated Polybutadiene (HTPB) II: Implications of the Kinetics to Combustion of Organic Polymers,” Combustion and Flame, Vol. 106, Issue 1-2, pp. 144-154, 1996.
[19] Chiaverini, M. J., et al., “Thermal Pyrolysis and Combustion of HTPB-Based Solid Fuels for Hybrid Rocket Motor Applications,” 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-96-2845, July 1996.
[20] Shuen, J. S. and Yoon, S., Numerical Study of Chemically Reacting Flows Using an LU Scheme, Report No.: AIAA-88-0436 & NASA CR-180882, Jan. 1988.
[21] Van Leer, B., Liou, M. S., and Shuen, J. S., “Splitting of Inviscid Fluxes for Real Gases,” Journal of Computational Physics, Vol. 87, Issue 1, pp. 1-24, 1990.
[22] Van Leer, B., “Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 32, Issue 1, pp. 229–248, 1997.
[23] Yu, S. T., Tsai, Y. L. and Shuen, J. S., “Three-Dimensional Calculation of Supersonic Reacting Flows Using an LU Scheme,” 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
[24] Steger, J. L. and Warming, R. F., “Flux Vector Splitting of the Inviscid Gas Dynamic Equations with Application to Finite Difference Methods,” Journal of Computational Physics, Vol. 40, Issue 2, pp. 263-293, Apr. 1981.
[25] Baldwin, B. and Lomax, H., “Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows,” AIAA-78-257, Aerospace Sciences Meeting, 16th, Huntsville, Ala., Jan. 16-18, 1978.
[26] Reid, R. C., Prausnitz, J. M. and Sherwood, T. K., Properties of Gases and Liquids, 3rd Edition, McGraw-Hill, 1977.
[27] Chiaverini, M. J., Kuo, K.K., Peretz A. and Harting G. C., “Regression-Rate and Heat-Transfer Correlations for Hybrid Rocket Combustion,” Journal of Propulsion and Power, Vol. 17, No. 1, pp. 99-110, January-February 2001.
[28] Westbrook, C. K. and Dryer, F. L., “Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,” Combustion Science and Technology, Vol. 27, ISSue 1, pp. 31-43, Dec. 1981.
[29] Merkle, C. L. and Venkatewaran, S., Fundamental Phenomena on Fuel Decomposition and Boundary Layer Combustion Processes with Applications to Hybrid Rocket Motors, Part II, 106 Research Building East, Pennsylvania, Final Report 16801, 1996.
[30] Yetter, R. A., Dryer, F. L. and Rabitz, H., “Flow Reactor Studies of Carbon Monoxide/ Hydrogen/Oxygen Kinetics,” Combustion Science and Technology, Vol. 79, Issue 1, pp. 129-140, 1991.
[31] Jachimowski, C. J., “A Simplified Hydrocabon Reaction Mechanism for Combustion Applications,” Journal of Propulsion, Vol. 1, No. 5, pp. 329-335, sep.Oct. 1985.
[32] Westbrook, C. K. and Dryer, F. L., “Comprehensive Mechanism for Methanol Oxidation,” Combustion Science and Technology, Vol. 20, Issue 3, pp. 125-140, Sep. 1991.
[33]  Laskin, A., Wang, H. and Law, C. K., Detailed Kinetic Modeling of 1,3-Butadiene Oxidation at High Temperature, John Wiley & Sons, pp. 589-614, May 2000.
[34] Mueller, M. A., Yetter, R. A. and Dryer, F. L., Flow Reactor Studies and Kinetic Modeling of the H2 / O2 / NOX and CO/ H2O/ O2/ NOX Reactions, John Wiley & Sons, pp. 7059-724, June 1999.
[35] Yetter, R. A., Dryer, F. L. and Rabitz, H., “A Comprehensive Reaction Mechanism for Carbon Monoxide/ Hydrogen / Oxygen Kinetics,” Combustion Science and Technology, Vol. 79, Issue 1, pp. 97-128, sep. 1991.
[36]  Hongyan, S., Yang, S. I., Jomaas, G. and Law, C. K., “High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide / Hydrogen Combustion,” Proceedings of the Combustion Institute, Vol. 31, Issue 1, pp. 439–446, 2007.
[37]  Mishra, M. K., Yetter, R., Reuven, Y., Rabitz, H. and Smook, M. D., “On the Role of Transport in the Combustion Kinetics of a Steady-State Premixed Laminar CO + H2 + O2 Flame,” International Journal of Chemical Kinetics, Vol. 26, Issue 4, pp. 437-453, 1994.
[38]   Hendry, D. G., Mayo, R F. and Scheutzle, D., “Oxidation of 1,3-Butadiene,” Industrial and Engineering Chemistry  Product Research and Development, ACS Publication, Vol. 7, Issue 2, pp. 136-145, 1968.
[39]  Petersen, E. L., Davidson, D. F. and Hanson, R. K., Reduced Kinetics Mechanisms for Ram Accelerator Combustion, AIAA Publication, 1997.
[40]  Babushok, V. I. and Dakdancha, A. N., “Global Kinetic Parameters for High-Temperature Gas-Phase Reactions,” Translated from Fizika Goreniya i Vzryva, Vol. 29, No. 4, pp. 48-80, Jul.-Aug. 1993.
[41] Westbrook, C. K. and Pitz, W., “A Comprehensive Chemical Kinetic Reaction Mechanism for Oxidation and Pyrolysis of Propane and Propene,” Combustion Science and Technology, Vol. 37, Issue 3, pp. 117-152, 1984.
[42] Tsai, Y. L. and Hsieh, K. C., “Comparative Study of Computational Efficiency of Two LU Schemes for Non-Equilibrium Reacting Flows,” 28th Aerospace Sciences Meeting,Nevada, January 1990.
[43] طهماسبی، احسان­اله. طراحی مفهومی موتور هیبرید بر اساس بهینه­سازی پارامترهای اصلی آن، پایان ­نامه کارشناسی ارشد، دانشگاه صنعتی خواجه نصیرالدین طوسی، شهریور 1388.