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Online optimal reentry guidance of reentry vehicles is the main objective of this 

paper. The procedure is based on the Matched Asymptotic Expansion (MAE) method, one 

of the Singular Perturbation Theory (SPT) procedures, and is aided with the Variation of 

Extremals (VOE) method. The new technique, named MAEOG(Matched Asymptotic 

Expansion Optimal Guidance) offers a very low solution time and an acceptable accuracy 

compared with the other numerical methods used until now for reentry optimization. 

Furthermore, it permits considering both the lift and the aerodynamic roll angle as 

control variables. The features of the new method appear completely suitable to develop a 

guidance scheme for atmospheric reentry.  
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Introduction 12 

The different methods developed inside the Singular 

Perturbation Theory (SPT) have been extensively used 

in the last decades in the field of Optimal Control 

[1],[2] and [3]. Shen [4] demonstrated the usefulness 

of the SPT procedures in reentry path optimization; 

Vinh et al. [5] and [6] and Shi [7] and [8] used one of 

the SPT methods known as matched asymptotic 

expansion (MAE) to optimize the reentry of a 

hypersonic vehicle.     

This approach presented good and quick solutions 

and was improved and applied to the reentry problem 

and other aerospace problems more recently [9], [10], 
[11] and [12]. In most of these works, the equations 

were a priori simplified with considering only the lift 

or the lift to drag ratio as the control. Then, according 

to MAE method, the general equations were split into 

outer (Keplerian region) and inner (Aerodynamic-

Predominated region) equations, each solved 

analytically. Finally, the two solutions were matched 

asymptotically.  

This paper presents a method that preserves the 

advantages of the earlier solutions such as those based 

only on velocity and in addition permits the 

optimization considering both the lift and the 

aerodynamic roll angle as controls. In addition it can 

be used to develop an online reentry guidance scheme.    
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Reentry Model & Problem Statement 

The equations of motion of a non-thrusting vehicle 

entering a planetary atmosphere, assumed to be at rest 

around a spherical, non-rotating planet are first 

considered [3](Fig.1A). 
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In equations (1), r is the radial distance from the 

Earth center, θ is the longitude, φ the latitude, V is the 

absolute velocity, γ is the flight path angle and ψ is the 

heading. Then the transformed equations are obtained 

first considering instead of time a new independent 

variable. It is the elevation above the reference height 

made dimensionless by it, according to equations (2) 

and (3): 
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Sr  is the reference height and y  is the elevation 

above it. Before introducing h as the new independent 

variable, one must assume that h is absolutely 

decreasing during the path. This depends on the initial 

conditions of the reentry, the initial flight path angle 

and especially to the lift characteristics of the reentry 

vehicle.   

 The Chapman's variables are introduced in the 

subsequent form: 
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The subsequent transformations are also considered: 
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where S  is the atmospheric density at the reference 

height, S is a reference area from the geometry of the 

reentry vehicle,   is the reciprocal of the scale height, 

*

LC  is the lift coefficient corresponding to the 

maximum lift to drag ratio and  
*

DC  is the drag 

coefficient corresponding to the same condition. 

According to equation (9) , the first control variable, δ 

can be defined. The other control variable is the 

aerodynamic roll angle μ  ; considering it as a variable, 

is one of the main differences of the present problem 

in comparison with other defined previously[8].   

For purpose of calculation, )(f  is considered 

as above; empirical data and some references [5] 

demonstrate that this is an acceptable assumption. The 

coefficients a, b and c can be allocated considering the 

special case for which the problem is solved; in other 

words considering the special aerodynamics of the 

reentry vehicle treated in each problem.    

In addition, instead of  and,,  three new 

variables are introduced from celestial mechanics. 

They are andI ,,  which according to reference 

[6] are respectively the inclination of the plane of the 

osculating orbit, the longitude of the ascending node 

and the angle between the line of the ascending node 

and the position vector (Fig.1B). Their relations with 

the previous set of angles is as follow : 
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Fig.1 (A) Initial variables and AoA and Aeroynamic Roll 

shown on the RV  

 

Fig.1(B) Relations between two set of state variables [6] 

 These leads to the final equations:
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In these equations  and   are the controls and 

clearly both of them are bounded. The performance 

measure is defined considering the necessities that 

usually arise in reentry problems, namely final velocity 

and coordinates. 
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where different k  stand for weighting coefficients and 

must be positive. It must also be considered that 

fi handh are respectively the initial and the final 

points of the integration. 

Boundary Values and Known Coefficients 

For the previously stated problem, the boundary known 

values are considered the initial values of the states in the 

path. It must be remembered that the initial height ih   is 

considered almost at the beginning of the dense 

atmosphere. Finally also fh is assumed known.  

Outline of the Method   

 At first, using Optimal Control Theory, the optimality 

conditions are written and the resulting system of 

differential equations is transformed as mentioned 

above. The small parameter (which is set zero to 

singularly perturb the equations) is identified as 

 ε = 1/βr, where the βr, is the reciprocal of the Earth 

scale height cross its radius. A weighted mean is 

considered for ε over the Earth atmosphere[5].             

At first, with the degeneration (expanding on the 

basis of ε and considering the zeroth-order terms), the 

Outer or Keplerian region equations are obtained; they 

can be integrated analytically.  

Then the equations related to the Inner or 

Aerodynamic-Predominated region (obtained after 

introducing the new independent variable and 

expanding for ε and considering the zeroth-order 

terms)    are integrated numerically and the initial 

conditions for the state equations are obtained with the 

aid of the matching condition. The matching condition 

says that the limit of the Inner solution for  h  

must equal the value of the limit of the Outer solution 

for 0h . The key assumption is that in the initial 

point, say ih , the influence of the inner solution on the 

states is negligible. In other words the assumption is 

that in the Keplerian region, the influence of the inner 

or Aerodynamic originated part of the equations is 

negligible. In this way, equating the initial known 

conditions with the equations obtained from the 

solution of the outer equations, the outer solution is 

completely defined. Then with the aid of the matching 

condition stated above, the initial value for the 

integration of the inner equations can be obtained. In 

other words these initial conditions are almost equal to 

the value of the inner equations for  h  and so 

are equal to the limit of the outer (known) equations 

for 0h .  

 The physical insight gained through the state 

values also permits to make a good guess for the initial 

values of the co-state equations in the Inner solution. 

This guess is optimized through the Variation of 

Extremals iterative procedure [13] and being always 

near the right solution, few iterations are needed for 

convergence.  

As will be shown, this new technique, which uses 

the concept of Matched Asymptotic and the 

capabilities of Variation of Extremals, leads to the 

solution very fast and has acceptable accuracy.    

Outer (Keplerian) Solution 

At first, equations (13) to (17) are expanded for ε  and 

the zeroth-order terms are considered. The resulting 

equations are as follow. 
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The subscripts "o" are showing that these are the 

outer equations.  

Then the optimal procedure is applied. The starting 

point is the construction of the Hamiltonian matrix. Using 

it, the co-state equations are derived. In their equations 

the control-including terms have vanished in the outer 

equations thus there is no need to solve the optimal 

control problem. The result is quite logical because in the 

Keplerian region, (for which the outer equations are 
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written) the aerodynamic controls considered in the 

problem have negligible effect on the motion. 

Then we can find the outer solution analytically. 
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Considering that the assumed ih  is almost on the 

limit of the dense atmosphere, one can neglect the 

effect of inner equations on the overall value of the 

single states. Thus, it is possible to equate the 

equations (24) to (28) to the initial conditions known 

for the problem. In this way, the integration 

coefficients C1 to C5 are determined and so the outer 

part of the answer for the states becomes known. 

Inner (Aerodynamic Predominated) Solution 

A new independent variable is introduced in equations 

(13) to (17). 



h
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After this variation, the resulting equations are 

expanded for ε and the zeroth-order terms are 

considered another time. 
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The bar shows that these are the inner equations. 

Then is the turn of the Hamiltonian matrix. 
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 Now co-state equations are obtained. 
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In addition, the optimal controls are obtained 

according to the Pontryagin Minimum Principle. 

),(),( **  HH                                            (41) 

In this way the optimal controls are equal to their 

minimum or maximum value or equal to the values 

indicated by equations (42) and (43). 
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On the other hand the maximum and minimum 

reachable value for  in each situation depends on the 

aerodynamic characteristics and performance of the 

selected reentry vehicle. For the solution of the technical 

example of this paper we have considered a hypothetical 

reentry vehicle (shown in Fig.9) and its aerodynamic 

coefficients for each Mach number and angle of attack 

are derived by simulation in Fluent 6.1.22 and shown in 

tables (1) and (2) in look-up table format. 
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Table1.Variation of E (CL/CD) for different Mach and angle of attacks  

 

Table2. Variation of CD for different Mach and angle of attacks 

 

 

Fig.9 Hypothetical Reentry Vehicle considered for the 

solution of the technical example 

 

For the aerodynamic roll control the maximun 

and minimum values are considered as follow. 
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The analytical solution of equations (36) to 

(40), applying (41) as a condition, is 

computationally difficult and so the numerical 

solution of these equations must be tried. As stated 

earlier in the outline of the method, the initial value 

for the integration of the states equation is obtained 

setting 0h  in the outer solutions. The important 

point to note is that the farther the initial height, the 

less the error introduced by this assumption. Then 

the initial value for the co-states must be 

considered. An arbitrary value is considered for 

them. Considering that the states are all in the [0 1] 

neighbourhood an initial value in this space can be a 

good start. The initial guess is corrected through the 

known Variation of Extremals procedure. The initial 

guess can not be completely arbitrary because for 

initial guess far from the solution, Variation of 

Extremals can diverge. Now the condition about the 

final value of co-states must be considered. 
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The weighting coefficients and the desired final 

values are supposed to be known; for a particular 

reentry problem the final values are part of the 

problem; determining the weighting coefficient is not 

straightforward and right allocation of them needs 

good insight and experience. 

The final value of the states, according to match 

asymptotic expansion is as follow. 
 

)()()()( fXfXfXfX io     (46) 

Until now, the outer solution is obtained for the states 

and the intermediate solution can be computed 

obtaining the limit of the outer solution for 0h  [6].  
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With the guess made for the co-states as described, 

the Variation of Extremals procedure is started. Each 

time the inner values for the states and the co-states 

are computed. The outer solution is added to the 

inner and the intermediate solution according to (46) 

and the computed co-states are compared with those 

assumed  at the start of each iteration. 

Solving a technical example 

For a practical example(with (48) as initial points and 

(49) as desired final point) and a hypothetical reentry 

vehicle (Fig.9) for which the lift and drag coefficients 

are computed as functions of Mach number, 

Reynolds number and angle of attack through 

Fluent6.1.22 (results in tables 1 and 2), the code 

written with the mentality of this paper produces  

interesting results.  
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The code converges to the answer rapidly. The entire 

operation of the code conversion and result addition to the 

outer and intermediate solutions and forming the global 

solution lasts 8 ms using a standard 2.4 Ghz speed PC. The 

accuracy is thought acceptable, because it remains less than 

6%  compared to a more precise solution method such as 

Steepest Descent, performed for the global problem. Table 

3 resumes the results of this part. 

Table 3. Accuracy and solution time comparison 

between Steepest Descent and MAE 

 Final Accuracy Solution Time 

Steepest Descent Precise Several Minutes 

MAE 6% error 8 ms 

As shown by Fig.2, in a typical reentry, the outer 

solution trend (the starred line) is to slightly increase 

the velocity but after entering in the dense atmosphere, 

the power of the inner solution(Aerodynamic-

Predominated) overcomes those of the outer solution 

and obliges the velocity to decrease. Fig.3 shows the 

result for the Path angle. Fig.4 makes clear that the 

error of the method compared with Steepest Descent is 

quite negligible. Fig.5 is an exaggerated view of Fig.4. 

Fig. 6 shows the optimal controls. 

 

Fig.2 Velocity across Height and the role of outer and 

inner solution 

 

Fig.3 Path Angle across Height and the role of outer 

and inner solution 

 

Fig.4 Comparison between Steepest Descent and 

method presented 
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Fig.5 Exaggerated view of Fig.4 

 

Fig.6 Optimal Controls 

The results, particularly those related to velocity 

across height and path angle are also compared with 

some previous calculations [15] and they seem quite 

acceptable.  

Implementation as a Guidance Scheme, 

MAEOG Method and Perturbations 

Considered 

Singular perturbation methods were previously used 

to generate online the optimal trajectories for 

aircrafts [16], [17]. This earlier works suggest a 

similar approach for the reentry case. In fact, 

instead of considering a guidance scheme that tries 

to make zero the error of the path respect to a pre-

known path, the guidance scheme developed on the 

basis of the method presented in this paper, can 

compute online the "new" optimal trajectory at 

each new point of the trajectory that can be out of 

the initial optimal path. In other words, the reentry 

vehicle during its motion, receives with a 

frequency that depends on the time of the 

computation of the optimal path (say, around 125 

Hz for our problem), new control inputs for flying 

on the new optimal path, obtained with the data 

transmitted to the onboard computer the last 

sampling time (8 ms in the past) Fig.7. The result 

is the method that is called MAEOG. 

 

Fig.7 Implementation of the method as an online 

guidance scheme (MAEOG) 

Different phenomena can influence the motion 

of the vehicle and cause its deviation from the 

theoretical conditions. The high thermal heating can 

cause the melting of some parts of the thermal 

protection, therefore change the lift, and drag 

coefficients.  

In Fig.8, is assumed that something in the flight 

influences the lift reducing it. This change creates 

13% error in the final latitude achieved but by the 

guidance scheme described, this error is reduced to 

7%.   

 

Fig.8 Comparison between the guided path (MAEOG) 

and the un-guided path 
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The other great source of disturbance is the 

atmospheric turbulence and the wind.  

Another point to consider is the sensitivity of the 

method to variations in the initial conditions from 

which the computation is started. In other words, how 

can the vehicle correct the initial errors respect to a 

predefined path if crossing a specific point in the space 

is the purpose of the flight. Also this analysis can be 

done by simply generalize the MAEOG method.  

It cannot be ignored that in the online guidance 

sheme, after each time step, the guidance code needs to 

receive the new coordinates, velocity and path angle to start 

another computation and optimal path generation.  

Providing the reentry vehicle with this data can be 

done with the aid of sensors, earth bases and satellite 

systems.         

Results and Conclusions 

The new technique presented in this paper 

optimizes the atmospheric reentry trajectory with a 

considerably good velocity. For typical initial values, 

the code written on its base leads to the results in less 

than 10 ms with a normal PC with 2.4 Ghz speed. 

Moreover, its precision is comparable with the other 

frequently used methods such as Steepest Descent or 

Multiple Shooting. The Optimal Controls obtained 

for the hypothetical reentry vehicle of the paper are 

shown. Considering the features of the method, it can 

be considered a valuable candidate for the 

development of an efficient online reentry guidance 

scheme, also presented here and named MAEOG 

considering the computational basis of it. It has almost 

the precision of the known valid methods with the 

difference that it is faster and its implementing needs 

simplest hardware, since using simplest mathematical 

relations. 
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