
Vol. 3, No. 3 & 4, Fall 2010 and Winter 2011
                                                           pp. 11-18

Online Optimal Reentry Guidance via 
Matched Asymptotic Expansion 

M. Mortazavi1* and D. Abbasi-Moghadam2

 1, 2. Department of Aerospace  Engineering, Amirkabir University of Technology 
*Ave. Hafaz, Tehran, IRAN 

dabbasi7@yahoo.ir

Online optimal reentry guidance of reentry vehicles is the main objective of this 
paper. The procedure is based on the Matched Asymptotic Expansion (MAE) method, one 
of the Singular Perturbation Theory (SPT) procedures, and is aided with the Variation of 
Extremals (VOE) method. The new technique, named MAEOG(Matched Asymptotic 
Expansion Optimal Guidance) offers a very low solution time and an acceptable accuracy 
compared with the other numerical methods used until now for reentry optimization. 
Furthermore, it permits considering both the lift and the aerodynamic roll angle as 
control variables. The features of the new method appear completely suitable to develop a 
guidance scheme for atmospheric reentry.  
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Introduction 12

The different methods developed inside the Singular 
Perturbation Theory (SPT) have been extensively used 
in the last decades in the field of Optimal Control 
[1],[2] and [3]. Shen [4] demonstrated the usefulness 
of the SPT procedures in reentry path optimization; 
Vinh et al. [5] and [6] and Shi [7] and [8] used one of 
the SPT methods known as matched asymptotic 
expansion (MAE) to optimize the reentry of a 
hypersonic vehicle.     

This approach presented good and quick solutions 
and was improved and applied to the reentry problem 
and other aerospace problems more recently [9], [10],
[11] and [12]. In most of these works, the equations 
were a priori simplified with considering only the lift 
or the lift to drag ratio as the control. Then, according 
to MAE method, the general equations were split into 
outer (Keplerian region) and inner (Aerodynamic-
Predominated region) equations, each solved 
analytically. Finally, the two solutions were matched 
asymptotically.  

This paper presents a method that preserves the 
advantages of the earlier solutions such as those based 
only on velocity and in addition permits the 
optimization considering both the lift and the 
aerodynamic roll angle as controls. In addition it can 
be used to develop an online reentry guidance scheme.    
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Reentry Model & Problem Statement 
The equations of motion of a non-thrusting vehicle 
entering a planetary atmosphere, assumed to be at rest 
around a spherical, non-rotating planet are first 
considered [3](Fig.1A). 
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In equations (1), r is the radial distance from the 
Earth center,  is the longitude,  the latitude, V is the 
absolute velocity,  is the flight path angle and  is the 
heading. Then the transformed equations are obtained 
first considering instead of time a new independent 
variable. It is the elevation above the reference height 
made dimensionless by it, according to equations (2) 
and (3): 
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In these equations and  are the controls and 
clearly both of them are bounded. The performance 
measure is defined considering the necessities that 
usually arise in reentry problems, namely final velocity 
and coordinates. 
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where different k  stand for weighting coefficients and 
must be positive. It must also be considered that 

fi handh are respectively the initial and the final 
points of the integration. 

Boundary Values and Known Coefficients 
For the previously stated problem, the boundary known 
values are considered the initial values of the states in the 
path. It must be remembered that the initial height ih   is 
considered almost at the beginning of the dense 
atmosphere. Finally also fh is assumed known.  

Outline of the Method   
 At first, using Optimal Control Theory, the optimality 
conditions are written and the resulting system of 
differential equations is transformed as mentioned 
above. The small parameter (which is set zero to 
singularly perturb the equations) is identified as 

 = 1/ r, where the r, is the reciprocal of the Earth 
scale height cross its radius. A weighted mean is 
considered for  over the Earth atmosphere[5].             

At first, with the degeneration (expanding on the 
basis of  and considering the zeroth-order terms), the 
Outer or Keplerian region equations are obtained; they 
can be integrated analytically.

Then the equations related to the Inner or 
Aerodynamic-Predominated region (obtained after 
introducing the new independent variable and 
expanding for  and considering the zeroth-order 
terms)    are integrated numerically and the initial 
conditions for the state equations are obtained with the 
aid of the matching condition. The matching condition 
says that the limit of the Inner solution for  h

must equal the value of the limit of the Outer solution 
for 0h . The key assumption is that in the initial 
point, say ih , the influence of the inner solution on the 
states is negligible. In other words the assumption is 
that in the Keplerian region, the influence of the inner 
or Aerodynamic originated part of the equations is 
negligible. In this way, equating the initial known 
conditions with the equations obtained from the 
solution of the outer equations, the outer solution is 
completely defined. Then with the aid of the matching 
condition stated above, the initial value for the 
integration of the inner equations can be obtained. In 
other words these initial conditions are almost equal to 
the value of the inner equations for  h  and so 
are equal to the limit of the outer (known) equations 
for 0h .

 The physical insight gained through the state 
values also permits to make a good guess for the initial 
values of the co-state equations in the Inner solution. 
This guess is optimized through the Variation of 
Extremals iterative procedure [13] and being always 
near the right solution, few iterations are needed for 
convergence.

As will be shown, this new technique, which uses 
the concept of Matched Asymptotic and the 
capabilities of Variation of Extremals, leads to the 
solution very fast and has acceptable accuracy.

Outer (Keplerian) Solution 
At first, equations (13) to (17) are expanded for   and 
the zeroth-order terms are considered. The resulting 
equations are as follow. 
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The subscripts "o" are showing that these are the 
outer equations.  

Then the optimal procedure is applied. The starting 
point is the construction of the Hamiltonian matrix. Using 
it, the co-state equations are derived. In their equations 
the control-including terms have vanished in the outer 
equations thus there is no need to solve the optimal 
control problem. The result is quite logical because in the 
Keplerian region, (for which the outer equations are 
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written) the aerodynamic controls considered in the 
problem have negligible effect on the motion. 

Then we can find the outer solution analytically. 
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Considering that the assumed ih  is almost on the 
limit of the dense atmosphere, one can neglect the 
effect of inner equations on the overall value of the 
single states. Thus, it is possible to equate the 
equations (24) to (28) to the initial conditions known 
for the problem. In this way, the integration 
coefficients C1 to C5 are determined and so the outer 
part of the answer for the states becomes known. 

Inner (Aerodynamic Predominated) Solution 
A new independent variable is introduced in equations 
(13) to (17). 

hh                                                                      (29)

After this variation, the resulting equations are 
expanded for  and the zeroth-order terms are 
considered another time. 
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The bar shows that these are the inner equations. 
Then is the turn of the Hamiltonian matrix. 
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 Now co-state equations are obtained. 
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In addition, the optimal controls are obtained 
according to the Pontryagin Minimum Principle. 
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In this way the optimal controls are equal to their 
minimum or maximum value or equal to the values 
indicated by equations (42) and (43). 
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On the other hand the maximum and minimum 
reachable value for in each situation depends on the 
aerodynamic characteristics and performance of the 
selected reentry vehicle. For the solution of the technical 
example of this paper we have considered a hypothetical 
reentry vehicle (shown in Fig.9) and its aerodynamic 
coefficients for each Mach number and angle of attack 
are derived by simulation in Fluent 6.1.22 and shown in 
tables (1) and (2) in look-up table format. 
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The weighting coefficients and the desired final 
values are supposed to be known; for a particular 
reentry problem the final values are part of the 
problem; determining the weighting coefficient is not 
straightforward and right allocation of them needs 
good insight and experience. 

The final value of the states, according to match 
asymptotic expansion is as follow. 

)()()()( fXfXfXfX io                  (46) 
Until now, the outer solution is obtained for the states 
and the intermediate solution can be computed 
obtaining the limit of the outer solution for 0h  [6].  

h
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With the guess made for the co-states as described, 
the Variation of Extremals procedure is started. Each 
time the inner values for the states and the co-states 
are computed. The outer solution is added to the 
inner and the intermediate solution according to (46) 
and the computed co-states are compared with those 
assumed  at the start of each iteration. 

Solving a technical example 
For a practical example(with (48) as initial points and 
(49) as desired final point) and a hypothetical reentry 
vehicle (Fig.9) for which the lift and drag coefficients 
are computed as functions of Mach number, 
Reynolds number and angle of attack through 
Fluent6.1.22 (results in tables 1 and 2), the code 
written with the mentality of this paper produces  
interesting results.  
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The code converges to the answer rapidly. The entire 
operation of the code conversion and result addition to the 
outer and intermediate solutions and forming the global 
solution lasts 8 ms using a standard 2.4 Ghz speed PC. The 
accuracy is thought acceptable, because it remains less than 
6%  compared to a more precise solution method such as 
Steepest Descent, performed for the global problem. Table 
3 resumes the results of this part. 

Table 3. Accuracy and solution time comparison 
between Steepest Descent and MAE

Final Accuracy Solution Time 
Steepest Descent Precise Several Minutes 
MAE 6% error 8 ms 

As shown by Fig.2, in a typical reentry, the outer 
solution trend (the starred line) is to slightly increase 
the velocity but after entering in the dense atmosphere, 
the power of the inner solution(Aerodynamic-
Predominated) overcomes those of the outer solution 
and obliges the velocity to decrease. Fig.3 shows the 
result for the Path angle. Fig.4 makes clear that the 
error of the method compared with Steepest Descent is 
quite negligible. Fig.5 is an exaggerated view of Fig.4. 
Fig. 6 shows the optimal controls. 

Fig.2 Velocity across Height and the role of outer and 
inner solution

Fig.3 Path Angle across Height and the role of outer 
and inner solution

Fig.4 Comparison between Steepest Descent and 
method presented
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Fig.5 Exaggerated view of Fig.4

Fig.6 Optimal Controls

The results, particularly those related to velocity 
across height and path angle are also compared with 
some previous calculations [15] and they seem quite 
acceptable.

Implementation as a Guidance Scheme, 
MAEOG Method and Perturbations 

Considered 

Singular perturbation methods were previously used 
to generate online the optimal trajectories for 
aircrafts [16], [17]. This earlier works suggest a 
similar approach for the reentry case. In fact, 
instead of considering a guidance scheme that tries 
to make zero the error of the path respect to a pre-
known path, the guidance scheme developed on the 
basis of the method presented in this paper, can 
compute online the "new" optimal trajectory at 
each new point of the trajectory that can be out of 
the initial optimal path. In other words, the reentry 
vehicle during its motion, receives with a 
frequency that depends on the time of the 
computation of the optimal path (say, around 125 
Hz for our problem), new control inputs for flying 
on the new optimal path, obtained with the data 
transmitted to the onboard computer the last 

sampling time (8 ms in the past) Fig.7. The result 
is the method that is called MAEOG. 

Fig.7 Implementation of the method as an online 
guidance scheme (MAEOG)

Different phenomena can influence the motion 
of the vehicle and cause its deviation from the 
theoretical conditions. The high thermal heating can 
cause the melting of some parts of the thermal 
protection, therefore change the lift, and drag 
coefficients.

In Fig.8, is assumed that something in the flight 
influences the lift reducing it. This change creates 
13% error in the final latitude achieved but by the 
guidance scheme described, this error is reduced to 
7%.

Fig.8 Comparison between the guided path (MAEOG) 
and the un-guided path
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The other great source of disturbance is the 
atmospheric turbulence and the wind.  

Another point to consider is the sensitivity of the 
method to variations in the initial conditions from 
which the computation is started. In other words, how 
can the vehicle correct the initial errors respect to a 
predefined path if crossing a specific point in the space 
is the purpose of the flight. Also this analysis can be 
done by simply generalize the MAEOG method.  

It cannot be ignored that in the online guidance 
sheme, after each time step, the guidance code needs to 
receive the new coordinates, velocity and path angle to start 
another computation and optimal path generation.  

Providing the reentry vehicle with this data can be 
done with the aid of sensors, earth bases and satellite 
systems.         

Results and Conclusions 
The new technique presented in this paper 

optimizes the atmospheric reentry trajectory with a 
considerably good velocity. For typical initial values, 
the code written on its base leads to the results in less 
than 10 ms with a normal PC with 2.4 Ghz speed. 
Moreover, its precision is comparable with the other 
frequently used methods such as Steepest Descent or 
Multiple Shooting. The Optimal Controls obtained 
for the hypothetical reentry vehicle of the paper are 
shown. Considering the features of the method, it can 
be considered a valuable candidate for the 
development of an efficient online reentry guidance 
scheme, also presented here and named MAEOG 
considering the computational basis of it. It has almost 
the precision of the known valid methods with the 
difference that it is faster and its implementing needs 
simplest hardware, since using simplest mathematical 
relations. 
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