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Online optimal reentry guidance of reentry vehicles is the main objective of this
paper. The procedure is based on the Matched Asymptotic Expansion (MAE) method, one
of the Singular Perturbation Theory (SPT) procedures, and is aided with the Variation of
Extremals (VOE) method. The new technique, named MAEOG(Matched Asymptotic
Expansion Optimal Guidance) offers a very low solution time and an acceptable accuracy
compared with the other numerical methods used until now for reentry optimization.
Furthermore, it permits considering both the lift and the aerodynamic roll angle as
control variables. The features of the new method appear completely suitable to develop a

guidance scheme for atmospheric reentry.
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Introduction

The different methods developed inside the Singular
Perturbation Theory (SPT) have been extensively used
in the last decades in the field of Optimal Control
[11,[2] and [3]. Shen [4] demonstrated the usefulness
of the SPT procedures in reentry path optimization;
Vinh et al. [5] and [6] and Shi [7] and [8] used one of
the SPT methods known as matched asymptotic
expansion (MAE) to optimize the reentry of a
hypersonic vehicle.

This approach presented good and quick solutions
and was improved and applied to the reentry problem
and other aerospace problems more recently [9], [10],
[11] and [12]. In most of these works, the equations
were a priori simplified with considering only the lift
or the lift to drag ratio as the control. Then, according
to MAE method, the general equations were split into
outer (Keplerian region) and inner (Aerodynamic-
Predominated region) equations, each solved
analytically. Finally, the two solutions were matched
asymptotically.

This paper presents a method that preserves the
advantages of the earlier solutions such as those based
only on velocity and in addition permits the
optimization considering both the lift and the
aerodynamic roll angle as controls. In addition it can
be used to develop an online reentry guidance scheme.
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Reentry Model & Problem Statement

The equations of motion of a non-thrusting vehicle
entering a planetary atmosphere, assumed to be at rest
around a spherical, non-rotating planet are first
considered [3](Fig.1A).
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In equations (1), r is the radial distance from the
Earth center, 0 is the longitude, ¢ the latitude, V is the
absolute velocity, v is the flight path angle and v is the
heading. Then the transformed equations are obtained
first considering instead of time a new independent
variable. It is the elevation above the reference height
made dimensionless by it, according to equations (2)
and (3):
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r=ry+y=ry(l+h) 2)
dh/dt=Vsiny/rg (3)

rg is the reference height and y is the elevation

above it. Before introducing h as the new independent
variable, one must assume that h is absolutely
decreasing during the path. This depends on the initial
conditions of the reentry, the initial flight path angle
and especially to the lift characteristics of the reentry
vehicle.

The Chapman's variables are introduced in the
subsequent form:

u=V=cos’y/rg (4)
z=’fi1/r/ﬁ 5)
m

The subsequent transformations are also considered:

B:pSSCL )
2mp

E'=C,/C, (7)

e=1/pr (8)

C, =C,8 €)

C, =C, f(5) (10)

f(O)=ad* +bS+c (11)

where Qg is the atmospheric density at the reference

height, S is a reference area from the geometry of the
reentry vehicle, /3 is the reciprocal of the scale height,

C, is the lift coefficient corresponding to the

*
maximum lift to drag ratio and C,, is the drag

coefficient corresponding to the same condition.
According to equation (9) , the first control variable, &
can be defined. The other control variable is the
aerodynamic roll angle p ; considering it as a variable,
is one of the main differences of the present problem
in comparison with other defined previously[8].

For purpose of calculation, f(J) is considered

as above; empirical data and some references [5]
demonstrate that this is an acceptable assumption. The
coefficients a, b and ¢ can be allocated considering the
special case for which the problem is solved; in other
words considering the special aerodynamics of the
reentry vehicle treated in each problem.

In addition, instead of @,1/,and @ three new
variables are introduced from celestial mechanics.
They are [,Q, and & which according to reference

[6] are respectively the inclination of the plane of the
osculating orbit, the longitude of the ascending node
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and the angle between the line of the ascending node
and the position vector (Fig.1B). Their relations with
the previous set of angles is as follow :

cos@cosy =cos [

sin(0 - Q)= 219 (12)
tan /

cos ¥ =cos ¢ cos( — Q)

z
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Fig.1(B) Relations between two set of state variables [6]

These leads to the final equations:

2Buexp(=h/ g)[@ +J tan ¥ cos u}
du _ —u _ E (13)
dh 1+h esiny

2 p—
ﬂ:coty(l_cos }/)+B5cosy§xp( h/s)(14)
dh  1+h esiny
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In these equations O and # are the controls and

clearly both of them are bounded. The performance
measure is defined considering the necessities that
usually arise in reentry problems, namely final velocity
and coordinates.

J=—u(h,)+
(1 2)lk, (arth,) = ety (h)))?
+ ko (Qh,) =, ()’
4k (i) =1, (1))

where different k stand for weighting coefficients and
must be positive. It must also be considered that

(18)

h; and h ; are respectively the initial and the final

points of the integration.

Boundary Values and Known Coefficients

For the previously stated problem, the boundary known
values are considered the initial values of the states in the

path. It must be remembered that the initial height /4, is

considered almost at the beginning of the dense
atmosphere. Finally also / ’ is assumed known.

Outline of the Method

At first, using Optimal Control Theory, the optimality
conditions are written and the resulting system of
differential equations is transformed as mentioned
above. The small parameter (which is set zero to
singularly perturb the equations) is identified as

€ = 1/Pr, where the Pr, is the reciprocal of the Earth
scale height cross its radius. A weighted mean is
considered for € over the Earth atmosphere[5].

At first, with the degeneration (expanding on the
basis of € and considering the zeroth-order terms), the
Outer or Keplerian region equations are obtained; they
can be integrated analytically.

Then the equations related to the Inner or
Aerodynamic-Predominated region (obtained after
introducing the new independent variable and
expanding for & and considering the zeroth-order
terms) are integrated numerically and the initial
conditions for the state equations are obtained with the
aid of the matching condition. The matching condition

says that the limit of the Inner solution for /1 — oo
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must equal the value of the limit of the Outer solution
for & —> 0. The key assumption is that in the initial

point, say hi , the influence of the inner solution on the

states is negligible. In other words the assumption is
that in the Keplerian region, the influence of the inner
or Aerodynamic originated part of the equations is
negligible. In this way, equating the initial known
conditions with the equations obtained from the
solution of the outer equations, the outer solution is
completely defined. Then with the aid of the matching
condition stated above, the initial value for the
integration of the inner equations can be obtained. In
other words these initial conditions are almost equal to
the value of the inner equations for % — oo and so
are equal to the limit of the outer (known) equations
for h — 0.

The physical insight gained through the state
values also permits to make a good guess for the initial
values of the co-state equations in the Inner solution.
This guess is optimized through the Variation of
Extremals iterative procedure [13] and being always
near the right solution, few iterations are needed for
convergence.

As will be shown, this new technique, which uses
the concept of Matched Asymptotic and the
capabilities of Variation of Extremals, leads to the
solution very fast and has acceptable accuracy.

Outer (Keplerian) Solution

At first, equations (13) to (17) are expanded for € and
the zeroth-order terms are considered. The resulting
equations are as follow.

du u

e (19)
dh 1+h
A T A 20)
dh 1+h w0 ’
do 1

-= 21)
dh  (1+h)tany,
dQ

2= 22
o (22)
di

=0 23
h (23)

The subscripts "o" are showing that these are the
outer equations.

Then the optimal procedure is applied. The starting
point is the construction of the Hamiltonian matrix. Using
it, the co-state equations are derived. In their equations
the control-including terms have vanished in the outer
equations thus there is no need to solve the optimal
control problem. The result is quite logical because in the
Keplerian region, (for which the outer equations are
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written) the aerodynamic controls considered in the
problem have negligible effect on the motion.
Then we can find the outer solution analytically.

u, =C, /(1+h) (24)
g, =——— 25)
o, = \/1iC2 tanh™'[ \/Lia+_C12 1+C, (26)
Q =c, @7)
I, =c, (28)

Considering that the assumed hi is almost on the

limit of the dense atmosphere, one can neglect the
effect of inner equations on the overall value of the
single states. Thus, it is possible to equate the
equations (24) to (28) to the initial conditions known
for the problem. In this way, the integration
coefficients C, to Cs are determined and so the outer
part of the answer for the states becomes known.

Inner (Aerodynamic Predominated) Solution

A new independent variable is introduced in equations
(13) to (17).
h =ﬁ (29)
13
After this variation, the resulting equations are
expanded for & and the zeroth-order terms are
considered another time.

di _ 2Biexp(- h)[ /)

+J tan ¥ cos ,u} (30)

dh siny
d_
=-Bo ~h 31
k= ~B cos pexp(-h) G1)
da _ BSsinusina exp(—h) 52)
dh sin 7 cos ¥ tan [
a’Q B§sm,u sin @ exp(—h)
(33)
dh siny cos ¥ sin /
ﬂ _ Bdsin ucosa exp(—h) 34

dh siny cosy
The bar shows that these are the inner equations.
Then is the turn of the Hamiltonian matrix.

dh dh

+ﬂ +/1 — (35)
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Now co-state equations are obtained.

dA _ 2BA exp(- h){f@)
dh siny E

+otany cos ,u} (36)

dA, — 2B exp(- h){f((f) cosj/ 5cos,u}
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dh sin’ 7 sin ¥ cos
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In addition, the optimal controls are obtained
according to the Pontryagin Minimum Principle.

H(8", 1" )< H(S, 1) (41)

In this way the optimal controls are equal to their
minimum or maximum value or equal to the values
indicated by equations (42) and (43).

B 1 = sina
ﬂz + 2/@7 cosy  sinycosytan]
A ne @)
sin/siny cosy
_j's ' ccjsﬁ _
siny cosy

0 =(1/2a)~E tany cos u

B cosysLnJ7E A, 7 € smﬂflnai L @)
2Au 2A,u cosy tan [

A,E" sin usina 7 E’sin ycosa

24,1 cos y

= —b)
2Ausinl cosy

On the other hand the maximum and minimum

reachable value for O in each situation depends on the
aerodynamic characteristics and performance of the
selected reentry vehicle. For the solution of the technical
example of this paper we have considered a hypothetical
reentry vehicle (shown in Fig.9) and its aerodynamic
coefficients for each Mach number and angle of attack
are derived by simulation in Fluent 6.1.22 and shown in
tables (1) and (2) in look-up table format.
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Tablel.Variation of E (CL/CD) for different Mach and angle of attacks
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Fig.9 Hypothetical Reentry Vehicle considered for the
solution of the technical example

For the aerodynamic roll control the maximun
and minimum values are considered as follow.

—T<SUST (44)

The analytical solution of equations (36) to
(40), applying (41) as a condition, is
computationally difficult and so the numerical
solution of these equations must be tried. As stated
earlier in the outline of the method, the initial value
for the integration of the states equation is obtained
setting 1 — 0 in the outer solutions. The important
point to note is that the farther the initial height, the
less the error introduced by this assumption. Then
the initial value for the co-states must be
considered. An arbitrary value is considered for
them. Considering that the states are all in the [0 1]
neighbourhood an initial value in this space can be a
good start. The initial guess is corrected through the
known Variation of Extremals procedure. The initial
guess can not be completely arbitrary because for
initial guess far from the solution, Variation of
Extremals can diverge. Now the condition about the
final value of co-states must be considered.

A(hy) = —1

Ay(h)= 0

Ay(hy) = ky(a(h)=a,(hy))
Ay(hy) = ko(Q(h,)=Q,(h)))
AsChy) = k,(ICh;)=1,(h,))

ox h=h,

(45)
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The weighting coefficients and the desired final
values are supposed to be known; for a particular
reentry problem the final values are part of the
problem; determining the weighting coefficient is not
straightforward and right allocation of them needs
good insight and experience.

The final value of the states, according to match
asymptotic expansion is as follow.

X (f)=X,()+ X(f) - X.(f) (46)
Until now, the outer solution is obtained for the states
and the intermediate solution can be computed

obtaining the limit of the outer solution for /2 — 0 [6].
X, =limX,
h— oo

With the guess made for the co-states as described,
the Variation of Extremals procedure is started. Each
time the inner values for the states and the co-states
are computed. The outer solution is added to the
inner and the intermediate solution according to (46)
and the computed co-states are compared with those
assumed at the start of each iteration.

47

Solving a technical example

For a practical example(with (48) as initial points and
(49) as desired final point) and a hypothetical reentry
vehicle (Fig.9) for which the lift and drag coefficients
are computed as functions of Mach number,
Reynolds number and angle of attack through
Fluent6.1.22 (results in tables 1 and 2), the code
written with the mentality of this paper produces
interesting results.

h; = 80km — h, = Okm

u;, =0.7399

q; =cosy, = 0.9659 4g)
o, =0 deg

Q, =0 deg

I, =90 deg

o, = 22918 deg

Q, =0 deg (49)
I, =90 deg

The code converges to the answer rapidly. The entire
operation of the code conversion and result addition to the
outer and intermediate solutions and forming the global
solution lasts 8 ms using a standard 2.4 Ghz speed PC. The
accuracy is thought acceptable, because it remains less than
6% compared to a more precise solution method such as
Steepest Descent, performed for the global problem. Table
3 resumes the results of this part.
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Table 3. Accuracy and solution time comparison
between Steepest Descent and MAE

Final Accuracy | Solution Time
Steepest Descent | Precise Several Minutes
MAE 6% error 8 ms

As shown by Fig.2, in a typical reentry, the outer
solution trend (the starred line) is to slightly increase
the velocity but after entering in the dense atmosphere,
the power of the inner solution(Aerodynamic-
Predominated) overcomes those of the outer solution
and obliges the velocity to decrease. Fig.3 shows the
result for the Path angle. Fig.4 makes clear that the
error of the method compared with Steepest Descent is
quite negligible. Fig.5 is an exaggerated view of Fig.4.
Fig. 6 shows the optimal controls.
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Fig.4 Comparison between Steepest Descent and
method presented
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Fig.6 Optimal Controls

The results, particularly those related to velocity
across height and path angle are also compared with
some previous calculations [15] and they seem quite
acceptable.

Implementation as a Guidance Scheme,
MAEOG Method and Perturbations
Considered

Singular perturbation methods were previously used
to generate online the optimal trajectories for
aircrafts [16], [17]. This earlier works suggest a
similar approach for the reentry case. In fact,
instead of considering a guidance scheme that tries
to make zero the error of the path respect to a pre-
known path, the guidance scheme developed on the
basis of the method presented in this paper, can
compute online the "new" optimal trajectory at
each new point of the trajectory that can be out of
the initial optimal path. In other words, the reentry
vehicle during its motion, receives with a
frequency that depends on the time of the
computation of the optimal path (say, around 125
Hz for our problem), new control inputs for flying
on the new optimal path, obtained with the data
transmitted to the onboard computer the Ilast

Journal of Space Science and Technology /
Vol. 3, No. 3 & 4, Fall 2010 and Winter 2011 17

sampling time (8 ms in the past) Fig.7. The result
is the method that is called MAEOG.

Initial
Conditions |«

v

Outer
Solution

v

Inner
Solution

v

Matching and System Sensors
obtaining
final Solution

A 4

Optimal System Dynamics
Control

Fig.7 Implementation of the method as an online
guidance scheme (MAEOG)

Different phenomena can influence the motion
of the vehicle and cause its deviation from the
theoretical conditions. The high thermal heating can
cause the melting of some parts of the thermal
protection, therefore change the lift, and drag
coefficients.

In Fig.§8, is assumed that something in the flight
influences the lift reducing it. This change creates
13% error in the final latitude achieved but by the
guidance scheme described, this error is reduced to
7%.

Latitude (km)

Fig.8 Comparison between the guided path (MAEOG)
and the un-guided path
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The other great source of disturbance is the
atmospheric turbulence and the wind.

Another point to consider is the sensitivity of the
method to variations in the initial conditions from
which the computation is started. In other words, how
can the vehicle correct the initial errors respect to a
predefined path if crossing a specific point in the space
is the purpose of the flight. Also this analysis can be
done by simply generalize the MAEOG method.

It cannot be ignored that in the online guidance
sheme, after each time step, the guidance code needs to
receive the new coordinates, velocity and path angle to start
another computation and optimal path generation.

Providing the reentry vehicle with this data can be
done with the aid of sensors, earth bases and satellite
systems.

Results and Conclusions

The new technique presented in this paper
optimizes the atmospheric reentry trajectory with a
considerably good velocity. For typical initial values,
the code written on its base leads to the results in less
than 10 ms with a normal PC with 2.4 Ghz speed.
Moreover, its precision is comparable with the other
frequently used methods such as Steepest Descent or
Multiple Shooting. The Optimal Controls obtained
for the hypothetical reentry vehicle of the paper are
shown. Considering the features of the method, it can
be considered a valuable candidate for the
development of an efficient online reentry guidance
scheme, also presented here and named MAEOG
considering the computational basis of it. It has almost
the precision of the known valid methods with the
difference that it is faster and its implementing needs
simplest hardware, since using simplest mathematical
relations.
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