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The coupled rigid-body/slosh/elasticity dynamics equations are developed for 6-DoF 

flight of launchers. The equations of motion are derived by means of Lagrange’s 

equations in terms of quasi-coordinates and alternatively in the inertial frame. The simple 

pendulum model for planar motion is extended to model slosh dynamics in 6-DoF flight 

and the elastic motion is represented in terms of modal displacement coordinates relative 

to the elastic mean axes system. It is shown that this model is consistent with the simpler 

model for planar motion which has been developed in previous studies. The proposed 

dynamics model is incorporated in conjunction with the models for the other subsystems 

in a MATLAB/Simulink program to simulate 6-DoF flight of launchers. 
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Nomenclature 123 

Latin Symbols 
Damping constant : C 
Dissipation function : D 
Tank diameter : d 
Deformation vector : 𝐞 
Thrust : F 
Control engine force : F2 
Gravitational acceleration vector : 𝐠 
Hinge point distance from the liquid center 
of mass : H 

Liquid height from bottom of tank : h 
Moment of inertia : I 
Slosh vector : 𝐥 
Slosh vector in the equilibrium state : 𝐥0 
Pendulum length : L 
Generalized mass of the whole system : M 
Mass (without index: total mass of system) : m 
Number of modes : N 
Generalized force : 𝐐 
Center of mass position vector with respect 
to the origin of the inertial frame : 𝐑 
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Position vector with respect to 
the origin of the body frame : 𝐫 = (x, y, z) 

Initial position vector in the 
body frame (without 
deformation) 

: 𝐫0 

Kinetic energy : T 

Time : t 
Potential energy : U 
Center of mass velocity with 
respect to the inertial frame : 𝐕 = (u, v, w) 

Virtual work : W 

Greek symbols 
Control engine angle : β 

Slosh damping ratio : γ 
Deformation generalized 
coordinate : η 

Euler angles : 
𝚯
= (ϕEu, θEu, ψEu) 

Deformation damping ratio : λ 

Density : ρ 

Deformation mode shape function : 𝚽 
The angle of pendulum with the 
negative x direction : ψ 

Angular velocity of the body 
frame with respect to the 
inertial frame 

: 𝛚 = (p, q, r) 
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Introduction 

Oscillation of liquid free surface in a tank is called 

slosh. This phenomenon is observed in launchers, 

liquid fuel rockets, liquid transport equipments, etc. 

Slosh induces oscillatory forces and moments on the 

container. Therefore, accurate slosh dynamics 

modeling is a crucial task in vehicles which have a 

large fraction of their weights as liquid. For example in 

launchers, if the dominant slosh frequencies are close 

to any of the control system frequencies, instability in 

the flight characteristics can result. Such problems 

were reported by NASA in the Jupiter IRBM flight 

(1957 April 26), the Falcon I flight (2007 March 21), 

etc. 

The governing equations and principals of surface 

waves, focusing on propellant slosh in space vehicle 

tanks, have been reviewed in Refs. [1-3] where 

analytical solutions to slosh problem in tanks with 

various geometries have also been collected. 

Equivalent mechanical systems were used by Graham 

[4] for the first time and after that by many other 

researchers for modeling slosh dynamics. The 

parameters of these systems for tanks with different 

geometries were presented by Abramson et al. [1, 5], 

Bauer [6], Dodge and Kana [7], Lawrence et al. [8], 

Lomen [9] and others. The validity of equivalent 

mechanical models was confirmed by many 

experimental studies, e.g. [7, 10]. Recently, new 

experimental methods for determining equivalent 

mechanical system parameters were proposed by 

Schlee et al. [11] and Odhekar et al. [12]. 

In the next step of modeling, liquids can be replaced 

with equivalent mechanical systems to incorporate 

propellant slosh dynamics into the system dynamics 

and stability analysis. Equations governing motion of 

space vehicles can be categorized in several 

subsystems. They include dynamics, control, and 

guidance subsystems. Dynamics subsystem is itself 

composed of rigid body, elasticity, and slosh dynamics 

equations.  

From classical studies concerning the derivation of 

equations of motion for an elastic vehicle the works by 

Meirovitch and coworkers [13-15] can be pointed out. 

Recently, Bilimoria and Schmidt [17] developed a 

framework for integrated modeling of the motion of 

flight vehicles. They derived the coupled rigid-

body/elasticity equations including internal fluid flow, 

rotating machinery, wind, and a spherical rotating 

Earth model. 

In all of the above studies, the slosh dynamics has not 

been considered. In contrast to coupled rigid-

body/aeroelasticity studies, fewer studies have been 

devoted to integrated modeling of the three dynamic 

subsystems, namely the slosh, rigid-body, and 

aeroelasticity. From the earliest studies in this context, 

a model using many simplifications, including planar 

motion and neglecting centrifugal and coriolis forces, 

was reported in ref. [1]. Recently, Shekhawat et al. 

[18] derived the integrated rigid-body/slosh dynamics 

equations for a rigid vehicle in planar motion and 

investigated the effect of slosh parameters on the 

stability of the vehicle. There is no published study 

considering elasticity and slosh dynamics for a 6-DoF 

flight, as the best of our knowledge. 

In the following sections, first, an equivalent 

mechanical system based on series of simple pendulum 

is introduced to model propellant slosh. Then, a model 

is proposed to incorporate propellant slosh dynamics in 

the equations of motion for 6-DoF launcher flight by 

extending the simple pendulum model in planar 

motion. The elasticity of launcher is also considered in 

the derivation. As a validation, the consistency of the 

proposed model is checked with the simpler model 

which has been reported in other studies. Then, the 

proposed model is employed to simulate the flight of a 

launcher. Some of the results of an extensive study on 

the model performance are reported here. 

Slosh Modeling 

Equivalent mechanical systems are employed to 

incorporate slosh effect on the launcher dynamics 

equations. An equivalent mechanical system exerts the 

same net force and moment on the tank structure as the 

net force and moment exerted by the sloshing liquid. 

Furthermore, total mass, moments of inertia, center of 

mass location, and the damping effect are also the 

same. For more information about the properties of 

equivalent mechanical models consult Refs. [19, 2]. 

Before determining the parameters of an equivalent 

mechanical system, the slosh force and moment have 

to be determined. This is provided by solution of the 

Natural frequency : ω 
Subscripts 

Rigid mass, state of equilibrium 

with no deformation 
: 0 

Body frame : B 

Engine : E 

Elastic : e 

Gravitational : g 

ith deformation mode : i 
jth tank : j 
kth slosh mode : k 

Liquid : liq 

rth coordinate direction : r 
Slosh : s 

Launcher structure : st 
Other 

Vectorial quantity : Bold letter 

Matrix representation of tensor 

quantity 
: ⟦ ⟧ 
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equations, which govern motion of the sloshing liquid, 

via analytical or numerical methods or alternatively by 

experiments. 

Different mechanical models have been presented for 

slosh modeling in literatures. Here, we choose the 

simple pendulum model for lateral sloshing, the liquid 

in the jth tank is replaced by Ns simple pendulums and 

also a rigid mass, mj0, with the moment of inertia, 

⟦Ij0⟧, attached to the launcher structure (see Fig. 1). 

Each pendulum represents one slosh mode and has 

four parameters including the point mass, mjk, 

pendulum length, Ljk, hinge point distance from the 

liquid center of mass, Hjk, and damping constant, Cjk 

[2, 19 and 20]. 

 

 

 

 

 

 

 

 

Fig.1  Equivalent mechanical system (simple pendulum) for 

liquid in the jth tank. 

In the case of cylindrical tanks which are selected here 

as launcher propellant tanks, there is analytical 

solution for the linear slosh governing equations. It can 

be shown that the parameters of the equivalent 

pendulum system are [19, 21]  

𝑚𝑗𝑘 = 𝑚1𝑖𝑞,𝑗 [
tanh⁡(2ξkℎ𝑗/𝑑𝑗

(ξ𝑘
2−1)ξkℎ𝑗/𝑑𝑗

]⁡ , mliq,j =
π

4
ρjhjdj

2

Ljk =⁡
dj

2ξktanh(2ξkhj/dj)
, Hjk = Ljk +

hj

2
−

djtanh(ξkhj/dj)

ξk

mj0 = mliq,j −⁡∑ mjkk , Hj0 = −⁡
∑ mjkk (Hjk−Ljk)

mj0

  

Iy,j0=mliq,j (
hj
2

12
+

dj
2

16
) −

2mliq,jdj
2∑

[1−dj/(ξkhj)]tanh(ξkhj/dj)

(ξk
2−1)ξk

2k   

−mj0hj0
2 − ∑ mjkk (Hjk − Ljk)

2  

(1) 

where, dj is the diameter of the jth tank and ρj, 

mliq,j, and hj are the liquid density, mass, and height in 

the jth tank, respectively. ξk is the kth root of the Bessel 

function derivative of the first kind and of order one.  

Above model is for lateral liquid sloshing due to tank 

excitation (translational and rotational) in directions 

parallel to liquid free surface in its equilibrium state. In 

tanks with axially symmetric shapes, the rolling motion 

about the axis doesn’t create liquid sloshing but the 

relative rolling motion of liquid with respect to tank 

walls dissipates energy. This phenomenon, which is 

important in spin-stabilized space vehicles, is neglected 

here. In reference [22] a model has been presented to 

include this effect in dynamics equations. Translational 

excitation normal to liquid free surface also causes 

another kind of sloshing which is called vertical or 

parametric sloshing. This kind of sloshing is usually 

negligible [19, 2] and is omitted here.  

Launcher Dynamics Equations 

Dynamics equations can be derived by determining kinetic 

energy, T, potential energy, U, and dissipation function, D, 

of the system and utilizing Lagrange’s equation for each 

generalized coordinate,⁡qi. Lagrange’s equation is 

classically written in the inertial frame as 

   
𝑑

𝑑𝑡
[
𝜕(𝑇−𝑈)

𝜕𝑞̇𝑖
] −

𝜕(𝑇−𝑈)

𝜕𝑞𝑖
+

𝜕𝐷

𝜕𝑞̇𝑖
= 𝑄𝑞𝑖 ⁡⁡⁡                    (2) 

Then, the resultant equations are transformed into 

the body frame. Alternatively, Lagrange’s equation in 

terms of quasi-coordinates, also called Boltzmann-

Hamel equation, can be utilized that directly results in 

equations which are in the body frame. Both methods 

were employed here and the same set of equations was 

obtained in both cases. For details of the derivation, 

please refer to Ref. [22].  

Assuming linear slosh regime, the lateral sloshing 

in the pitch and yaw channels can be included 

independently. For this purpose, it is assumed here that 

two sets of simple pendulums are used. For cylindrical 

tanks, the parameters of these two sets are the same 

which are calculated by Eq.(1). The pendulums of the 

first set oscillate in x − z plane with the slosh angle 

(ψz)jk and affect only the motion in the pitch channel 

while the pendulums of the second set oscillate in x −

y plane with the angle (ψy)jk
 and affect only the yaw 

motion. One representative pendulum of each set is 

shown in Fig. 2.  

The following definitions are used; 

(3) 𝐫 = 𝐫0 + 𝐞 + 𝐥 

where, 𝐫 is the position vector of each point of 

the system with respect to the origin of the body 

frame. For a slosh mass, 𝐫0 is the initial position 

(without deformation) of its hinge point, 𝐞 is the 

deformation vector of this point, and 𝐥 is the slosh 
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yB 

vector which is the vector from the hinge point to the slosh 

point mass. For the launcher structure, 𝐫0 is the initial 

position of each point, 𝐞 is the deformation vector, and 𝐥 =
0. 

 

 

 

 

 

 

 

 
 
 

 

(A) 

 

 

 

 

 

 

 

 

 
 

(B) 

Fig.2 Representative simple pendulum oscillating in a specific 

channel. (A): in the pitch channel, (B): in the yaw channel. 

Here, the launcher center of mass is defined as the 

center of mass of all masses in their equilibrium states 

(𝐞 = 𝟎, 𝐥 = 𝐥0), where 𝐥0 indicates equilibrium 

position of the slosh masses. Therefore,  

(4) ∫ (𝐫0 + 𝐥0)⁡dmm
= 0 

where, the integration region m indicates the 

integration on the whole system masses. Selecting 

Cartesian coordinates, the following definitions are used 

(5) 𝐫 = x⁡𝐢B + y⁡𝐣B + z⁡𝐤B 

(6) 𝐫0 = x0⁡𝐢B + y0⁡𝐣B + z0⁡𝐤B 

(7) 𝐕 = u⁡𝐢B + v⁡𝐣B + w⁡𝐤B 

(8) 𝛚 = p⁡𝐢B + q⁡𝐣B + r⁡𝐤B 

(9) 𝐥 = lx⁡𝐢B + ly⁡𝐣B + lz⁡𝐤B 

(10) 𝐞 = ex⁡𝐢B + ey⁡𝐣B + ez⁡𝐤B 

(11) 𝐠 = gx⁡𝐢B + gy⁡𝐣B + gz⁡𝐤B 

⟦I⟧ = [

Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

] =

∫ [

y2 + z2 −xy −xz

−xy x2 + z2 −yz

−xz −yz x2 + y2
] ⁡dm

m
                           

    (12) 

where, 𝐕 is the center of mass velocity with 

respect to the inertial frame, 𝛚 is the angular 

velocity of the body frame with respect to the 

inertial frame, 𝐠 is the gravitational acceleration 

vector, ⟦I⟧ is the moment of inertia tensor. The 

subscript B indicates the components of a vector in 

the Cartesien body coordinates. 

For elasticity equations, it is usually assumed 

that  

𝐞 = ∑ ηx,i(t)
∞
i=1 ⁡ϕx,i(𝐫)⁡𝐢B +∑ ηy,i(t)

∞
i=1 ⁡ϕy,i(𝐫)⁡⁡𝐣B +

∑ ηz,i(t)
∞
i=1 ⁡ϕz,i(𝐫)⁡𝐤B 

(13) 

where, ⁡ϕr,i is the ith mode shape function of the 

rth coordinate direction (r = x, y, z) which is a function 

of position and ηr,i is the ith generalized coordinate of 

deformation in the rth coordinate direction and is a 

function of time, only. The body axes are selected as the 

mean axes wherein for an elastic body, the relative linear 

and angular momentums due to elastic deformation are 

zero at every instant, namely [16, 17] 

(14)∫ 𝐞̇⁡dm
m

= 0                                                                    

∫ 𝐫 × 𝐞̇⁡dm
m

= 0                                            (15) 

It is also assumed that the following assumptions 

are held 

v ≤ u,w⁡⁡⁡,⁡⁡⁡⁡v̇ ≤ u̇, ẇ⁡⁡⁡,⁡⁡⁡⁡r, p ≤ q⁡⁡⁡,⁡⁡⁡ṙ, ṗ ≤ q̇⁡⁡⁡⁡⁡⁡⁡⁡(16) 

where, ≪ ̇ ≫ sign indicates the time derivative 

in the body frame. The above assumption is true for 

a non-spinning stabilized launcher which its 

programmed motion is dominantly in x − z plane. In 

other words, the equations are simplified assuming 

this trim state. 

The dynamics equations of motion can be derived 

with the following assumptions as [22]  

Velocity (rigid body dynamics) 

m{
u̇
v̇
ẇ
} + m {

qw − rv
ru − pw
pv − qu

} + ∑mjkLjk {

0
ψ̈y

ψ̈z

}

jk

+  

∑mjk Ljk {

0
−(r2 + p2)ψy

−q2ψz

}

jk

−m{

gx
gy
gz
} = 𝐐𝐕          

(17) 

Angular velocity (rigid body dynamics) 
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{

Ixṗ + İxp

Iyq̇+İyq

Izṙ + (Iy − Ix)pq + İzr

} +

∑mjk Ljk {

0
u̇ψz − (x0 − L)ψ̈z

−u̇ψy + (x0 − L)ψ̈y

}

jk

+

∑mjk Ljk {

0
wqψz

−wqψy

}

jk

+  

g∑mjk ⁡{

0
Lψz⁡cosϕ

EusinϕEusinθEu

−Lψysin
2ϕEusinθEu

}

jk

+

[∑mjk Ljk {

0
0

qezψ̇y

}

jk

] = 𝐐𝛚     

(18) 

where, (ϕEu, θEu, ψEu) are the Euler angles which 

describe the orientation of the body frame relative to the 

vehicle-carrying frame in the standard aircraft (3-2-1) 

Euler sequence [17] and the sums are over all slosh 

masses. 

For each sloshing mass, mjk, (slosh dynamics) 

Lψ̈z + 2γψz
ωψz

Lψ̇z + {(u̇ − gx) + (qw − q2x0) −

[2qėz + q̇ez]}⁡ψz +  

{(ẇ − gz) − q̇(x0 − L) − qu + [ëz − q2ez]} = 0  

(19) 

Lψ̈y + 2γψy
ωψy

Lψ̇y + {(u̇ − gx) + qw −

q2(x0 + L) + [2qėz + q̇ez]}⁡ψy +  

{(v̇ − gy) − ru + ṙ(x0 − L) + pqx0 + [ëz − 2pėz +

rqez]} = 0  

(20) 

where, ωjk is the slosh frequency of the kth slosh 

mode in the jth tank, γψz
 and γψy

 are the slosh 

damping ratios. In Eqs.(19) and (20), for the variables 

ψz, ψy, L, x0, γψz
, γψy

, ωψz
, and ωψy

 the subscript jk 

is dropped for clarity of the equations.  

For accurate determination of elastic deformation, 

the distribution of slosh forces and moments acting on the 

launcher body should be considered in the aeroelasticity 

equations. Therefore, usage of equivalent mechanical 

systems, where distributed forces and moments are 

replaced by concentrated ones, is not appropriate in this 

case. These distributions are not usually available, hence 

as an approximation, equivalent mechanical models have 

been used for the derivation of aeroelastic equations in 

some literatures, e.g. [2, 22]. With this approximation, 

elasticity equations can be derived as  

Elasticity equations 

(20)Mx,iη̈x,i +Mx,iλx,iωe,x,iη̇x,i +Mx,iωe,x,i
2 ηx,i = Qηx,i

 

 My,iη̈y,i +My,iλy,iωe,y,iη̇y,i +My,iωe,y,i
2 ηy,i +

[∑mjk (Lψ̈yΦy,i)jk
] = Qηy,i

 

(21) 

 Mz,iη̈z,i +Mz,iλz,iωe,z,iη̇z,i +Mz,iωe,z,i
2 ηz,i +

[∑mjk (Lψ̈zΦz,i)jk] = Qηz,i
 

(22) 

where, ωe,r,i is the deformation frequency of the ith 

mode and of the rth coordinate direction and Mr,i is the 

ith generalized mass of the whole system and of the rth 

coordinate 

Mr,i = ∫ ⁡ϕr,i⁡ϕr,i⁡dmm
                                                  (23) 

The second approximation is to consider the 

whole system as an (equivalent) elastic solid body 

[23]. By this approximation, the terms in brackets are 

eliminated in Eq.(20)-(23).  

Consistency 

In this section, as a validation of our results, we 

simplify our equations with the assumptions used in 

the previous works and show that our equations are 

consistent with the previous models. For example, the 

dynamics equations of an elastic vehicle in 6-DoF 

motion without propellant sloshing were derived using 

different assumptions [17, 16 and 23]. Omitting all the 

slosh terms in the dynamics equations of section 3, the 

results of the corresponding references are recovered. 

Consistency check with another literature [2] is 

reported in the following. 

Planar motion of an elastic launcher 

In this section, as a validation of our results, we 

simplify our model with the assumptions which were 

used in the study by Dodge [2] and show that our 

equations are consistent in this simplified case. 

Dodge [2] assumed:  

1. The planar motion in x − z plane. 

2. Centrifugal and coriolis forces are negligible. 

3. Small disturbances. 

4. The gravity vector is in the negative x direction 

(𝐠 = −g⁡𝐢B). 

5. The vehicle is slender hence every quantity is 

assumed as a function of the x coordinate. 
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Stage 2 (7.36m) 

Stage 1 (14.16m) 

The thrust force, F, is decomposed to an axial, F1, and 

a control force, F2, which has the angle β with the 

negative x direction as shown in Fig.3. 

(24) F = F1 + F2⁡ 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Schematic configuration of different subsystems 

in a launcher (from Ref. [2] with some modifications). 

This relation is held for small oscillations 

(cosϕ~ cos β~1). It should be noted that ϕ̇ = −q in 

Fig.3. The generalized forces are [2] 

(25) Qu = F⁡ 

(26) Qw = F {ϕ + ∑ ηi
∞
i=1

dΦz,i

dx
|
x0,E

} + F2β⁡ 

(27) Qϕ = −Qq = F {x0,E∑ ηi
∞
i=1

dΦz,i

dx
|
x0,E

+

∑ ηi
∞
i=1 Φz,i(x0,E)} + F2x0,Eβ⁡ 

(28) Qηi
= F2β⁡Φz,i(x0,E)⁡ 

where, x0,E is the location of the control engine nozzle 

with respect to launcher center of mass. Aerodynamic 

forces are neglected. 

Employing the above simplifications in Eqs.(17)-

(24), one can obtains 

m{
u̇ + g
ẇ

} + ∑mjk {
0
Lψ̈

}
jk

= {
Qu

Qw
}⁡⁡                          (29) 

Iyϕ̈ − (u̇ + g)⁡∑mjk (Lψ)jk

+∑mjk[⁡Lψ̈(x0 − L)⁡]
jk
= Qϕ 

(30) 

Lψ̈ + 2Lγψωψψ̇ + (u̇ + g)ψ

= −[ẇ + ϕ̈(x0 − L) + ëz] 

(31) 

(32) η̈i + λiωiη̇i + ωi
2ηi =

Qηi

Mi
−

𝟏

Mi
∑mjk (Lψ̈Φz,i)jk 

These equations are in accordance with the 

equations which were derived in Ref. [2]. The only 

difference is due to the assumptions for the body 

axes and deformation. In that reference, the body 

axes has not been selected as the mean axes. And 

for the elasticity, Eq. (13) has not been assumed. 

To account for these differences, it is sufficient to 

add  

−(u̇ + g) [ϕ +
∂ez

∂x
]                                                         (33) 

to the left-hand side of Eq.(107) and  

−
𝟏

Mi
(u̇ + g)∑mjk (Lψ

∂Φz,i

∂x
)
jk

                                   (34) 

to the left-hand side of Eq.(108) to recover the 

equations of Ref. [2], exactly. The model of Ref. [2] 

(Eqs. (30)- (33)) was also used for the planar launcher 

flight in authors' previous work [20]. 

Simulation 

The new dynamics model (section 3) in conjunction 

with the models for other subsystems is used to simulate 

6-DoF flight of a launcher via a MATLAB/Simulink 

program which is named “Simulator”. The modeling 

approaches for the other subsystems which are used to 

develop the Simulator program can be found in the other 

literatures [24-26]. These models are for guidance and 

navigation, control, aerodynamic and thrust forces, 

atmospheric properties including the wind effect, 

elliptical earth model for gravity, etc. 

Note that, in this simulation, the second 

approximation for the elasticity (see section 3) is 

employed. In addition the slosh/elasticity interaction 

terms in the dynamics equations are neglected, i.e. in 

Eqs. (17) - (24), the terms in brackets are neglected. 

Therefore, the effect of deflection is only considered 

on aerodynamic forces and moments and on the engine 

thrust direction.  

Simulation is performed for a two-stage launcher 

with the specification reported below. Only the first 

stage of flight is considered.  

Tank position and launcher sizes: see Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig.4 Specification of the Launcher which is used in 

the simulation. 

Tank and launcher masses: The tank diameter is 

1.3 m and the initial masses of components are  
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mH2 = 5512⁡kg⁡, mO2

= 13779⁡kg⁡, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡mst,1st⁡stage

= 4576⁡kg 

⁡mtotal,2nd⁡stage = 7135⁡kg 

(35) 

It is assumed that the masses of first-stage 

propellants are consumed at constant rate during the 

first stage flight (120s). 

Moment of inertia tensor and center of masses: 

These parameters are computed assuming uniform 

mass distribution for each component (tanks and 

launcher body are assumed cylindrical).  

Engine thrust and aerodynamic forces: This 

information includes many parameters, including 29 

aerodynamic coefficients, thrust forces of main and 

control engines, etc. This information has been 

reported in Refs. [24, 26].  

Guidance and navigation: The guidance command 

has been designed to change from zero to −0.014⁡rad/s 
at about t = 10s and then gradually reduce with constant 

slopes in the intervals 12𝑠 < t < 83𝑠 and 83𝑠 < t <
118𝑠 (see also the solid line curve in Fig. 5). For more 

details of this subsystem, one can refer to Ref. [25].  

 

(A) 

 

(B) 

Fig.5  The pitch rate (q) versus time. Comparison of the 

guidance command and navigation measurement. (A) figure 

shows the whole range. (B) figure shows a scaled view. 

Now, some results of the simulation in the pitch 

channel are briefly described. In Fig.5, the pitch rate, 

q, is depicted during the flight. As observed in this 

figure, the deviation from the nominal (guidance) 

curve, which is due to the elasticity and slosh 

interactions, is negligible. But when the wind effect 

which exerts oscillatory aerodynamic forces and 

moments, is included, sever oscillations in the pitch 

rate are started at t = 27s. Two cases are considered in 

Fig.6. In the first case, slosh is not considered in the 

modeling and the second case includes slosh effect.  

 

 

Fig.6 The pitch rate (q) versus time. Aerodynamic wind 

forces and moments are included. Comparison of the 

guidance command and navigation measurement for the 

cases without and with slosh. 

When slosh is included, it takes longer time for 

the system to damp the high amplitude oscillations 

arise from the wind effect, because the settling time for 

the sloshing liquid propellant is greater than the 

settling time for the elastic solid structure. The net 

slosh moment which is exerted on the launcher in the 

pitch channel is depicted in Fig.7 for cases with and 

without the wind effect.  

 

Fig.7 The net slosh moment exerted on the launcher in the 

pitch channel versus time. Comparison of the cases with and 

without the wind effect. 
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The wind velocity which is exerted on the launcher 

during first stage is reported in Fig.8. The interaction 

between the wind and slosh causes high amplitude 

oscillations in the slosh moment. The maximum slosh 

moment also increases more than 2.5 times.  

For the specified launcher, the design of 

propellant tanks as well as control subsystem were 

done such that any of the dominant slosh frequencies is 

not close to the control frequencies, during the first 

flight stage. Therefore, the oscillations do not amplify 

and are damped after some time when the (wind) 

excitation ends.  

 

Fig. 8 Wind velocity components in the body coordinates. 

Conclusion 

The equivalent mechanical system based on series of 

simple pendulum was introduced to model propellant 

slosh. Then, the coupled rigid-body/slosh/elasticity 

dynamics equations were developed by means of 

Lagrange’s equations in terms of quasi-coordinates 

and simplified with appropriate assumptions. The 

simple pendulum model for planar motion was 

extended to model slosh dynamics in 6-DoF flight and 

the elastic motion was represented in terms of modal 

displacement coordinates relative to the elastic mean 

axes system. As a validation, the consistency of the 

model was checked with a previous simpler model. 

Finally, to show the application of the proposed model, 

the flight of a launcher was simulated and the effect of 

slosh on the launcher dynamics was investigated under 

a wind excitation.  
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