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The effect of rotating speed and stiffeners on vibrations for composite rotors is
investigated using Sander's shell theory. The frequency equation is derived implementing
the Rayleigh-Ritz procedure based on energy method. The effects of initial hoop tension,
centrifugal and Coriolis forces due to the rotation are considered to derive governing
equation. The displacement functions satisfying the both ends simply supported boundary
conditions are assumed to be trigonometric expressions. By using simple shell theory like
as Sander's shell theory the amount of equations and time expenditure are considerably
reduced and provides feasible analysis, solution and design especially for composite
materials optimization. UD composite materials are used for stiffeners. The effects of
these stiffeners are evaluated by an averaging method. Some of stiffeners shapes are
considered to optimize the ratio of natural frequency to weight.
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Introduction

Rotating shells and shafts are used in many industrial
applications and they are the main parts of many
machines, such as gas turbines, locomotive engines,
electric motors, rotor systems and fuel tanks. In many
cases, a rotating shell may be one of the main sources of
vibration and noise. In order to reduce the vibration, noise
and increasing strength and also to enhance the stiffness
of the shell, many shells and shafts are usually made of
laminated composite materials or it is reinforced by
stiffener. The stiffened cylindrical shell with beam type
elements is extensively used in mechanical structures,
such as aircraft fuselages, commercial vehicles, road
tankers, missiles, and submarines, etc.

It is, therefore, very important for engineers to
understand the vibration of composite shells in order to
design suitable shells with low vibration and noise
production  characteristics. Hence, vibration
characteristics of rotating stiffened cylindrical shells
are of great importance.

In recent years, as composite materials have
advantages of high strength-to-weight ratio, advanced
composite materials have been used widely in many
fields of engineering. There are many studies on these
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rotating structures without stiffeners. Previously
published papers, however, were primarily concerned
with the stiffened isotropic shell and many studies
have been carried out on laminated cylindrical shells
with or without the rotation. But papers about
optimization of related parameters were rare.

Numerous methods have been developed and used to
study the vibrational behavior of thin shells. These
methods range from energy methods based on the
Rayleigh-Ritz procedure to analytical methods in which,
respectively, closed-form solutions of the governing
equations and iterative solution approaches were used. On
the other hand, the wave propagation in cylindrical shells
has also been investigated by many researches.

The study of the vibrations for the composite
cylindrical shells has been reported by many researchers
[1-2]. They have studied the effects of various parameters
such as boundary conditions, aspect ratios, fiber
orientation angles and material properties of the
composite shells on the vibration characteristics. But only
several researchers investigated the vibrations of the
combined shell with an interior plate.

ESDU [3] (Engineering Science Data Unit) has
published a computer program for the orthogonally
stiffened shells. Irie et al. [4] studied the free vibration
of non-circular cylindrical shells with longitudinal
interior partitions by using the transfer matrix.

Mustafa and Ali [5] presented a concise yet
comprehensive method for the determination of natural



2 / Journal of Space Science and Technology
Vol. 4, No. | & 2, Spring and Summer 2011

frequency of ring, stringer and orthogonally stiffened
cylindrical shells based on the formulation of energy.
Lam and Loy [6] presented the vibration
characteristics for the GFRP composite laminate
cylindrical shell using different shell theories.

Lee and Kim [7] studied rotating stiffened
cylindrical shell by using the energy method. The
stiffeners are assumed to be an integral part of the shell
and have been directly included in analysis. Zhao et al.
[8] analyzed vibration analysis of rotating cross-ply
laminated circular cylindrical shells with stringer and
ring stiffeners. Love’s relations were used to obtain the
governing equation and then, they solved it by two
approaches including discrete elements and averaging
methods. Reddy's layerwise theory is combined with a
wave propagation approach by Ramezani and
Ahmadian [9] to study all the conventional boundary
conditions in our analysis by using Hamilton's principle.
One of the major advantages of the layerwise theory is
the possibility it provides for analyzing thick laminates
and, also, inter-lamina stresses (in forced vibrations)
with high accuracy. Qin et al. [10] observed grazing
bifurcation in the response of rubbing rotor. Patel and
Darpe [11] discussed use of spectrum cascade for
identification of rub and showed existence of backward
whirling components. Liew et al. [12] studied the
dynamic stability of composite laminated, functionally
graded and rotating cylindrical shells under periodic
axial forces . Ahmad and Nacem [13] investigated the
vibration characteristics of rotating FGM cylindrical
shells for a number of boundary conditions by using
wave propagation approach but unstiffened shells .
Civalek O'mer [14] proposes a discrete singular
convolution method for the free vibration analysis of
rotating conical shells. Frequency parameters of the
forward modes are obtained for different geometric
parameters. Wang et al. [15] derived the equation of
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motion for rotating circular cylindrical shells by using
the Donnell’s nonlinear shallow-shell theory, and it
includes Coriolis force and large-amplitude shell
motion effects. Isotropic  material considered to
cylindrical shells without stiffeners. Jafari et al. [16]
investigated the Free vibration of rotating ring
stiffened cylindrical shells with non-uniform stiffener
distribution

In the present paper, the Sander's shell theory is used
to perform an analytical solution for free vibration of
the stiffened composite shells by using Ritz method.
Although Sander’s theory is simple but in design
process, the time is so important and because its results
have a good approximation, it has been used. The
effects of initial hoop tension, centrifugal and Coriolis
forces due to the rotation are considered to derive
governing equation by using averaging method. A
computer code is prepared to characterize natural
frequency of isotropic and orthotropic stiffened shells
versus variations of rotating speed.

Theoretical Formulations

The stiffened cylindrical shell, as shown in Figure 1, is
considered to be thin, laminated and composed of an
arbitrary number layers with parameters length Z, radius R,
thickness /4, and is rotating about the x-axis at constant
angular velocityQ .A coordinate system ( x, 6,z ) is fixed

on the middle surface of the shell. The displacements of
the shell in the X, 6, z directions are denoted by u, v,

and w respectively. The depths of the stringer and ring
are denoted by d; and d,, respectively, and the
corresponding widths by b, and b,, respectively. The
displacements from the middle surface of the shell to
the centroid of the stringer and ring are denoted by Z;
and Z,, respectively.
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Figure 1. Coordinate system and stiffener and ring cross section area for the rotating and orthogonally stiffened cylindrical shell
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The strain vector can be written as
T

{‘9} = {el e, e ki k, k3} @)
Where the middle surface strains, e,e,,e;and

the middle surface curvatures kl,kz,k3 are defined

according to Sander’s theory [17] as follows
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For stringers, the displacements in the x,60,z
directions are defined as

U, =u—z—

ox
z Ow ©)
V. =y———
3 R 06
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The strain of stringers in the axial direction is
described as

ou,
g =

ox
For rings, the displacements in the x,0,z
directions are defined as
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The strain of rings in the radial direction is
described as

. = l(w,, ; avrj ©)
R 00

o= [rTelrT (11)
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If the shell is assumed to be simply supported, the
displacement components can be approximated in the
term of time (7) as

u= Acos(mﬂx)cos(nQJr wt)
V=38 sin(?) sin(n60 + wt) )
w = Csin(Z7%) cos(n6 + wt)

Where m represents the number of axial half
wave, n represents the number of circumferential half
wave and @ is the natural frequency of the rotating
shell.

Strain Energy of Shell

The strain energy of the shell is expressed as
1 L2rx ’
U, = 56[ Oj {el [S e | Radx ®)

Where [S] is the stiffness matrix and can be
written as

All AIZ 0 Bll BIZ 0 1
A12 A22 0 BIZ BZZ 0
[S] _ 0 0 4, O 0 B 9)
Bl] BIZ 0 Dll D]2 0
BIZ BZZ 0 DIZ DZZ 0
|0 0 By 0 0 Dy

Where the 4;, B; and D; are defined as extensional,
coupling and bending stiffness, respectively. For a shell
composed of different layers of orthotropic material, these
stiffnesses can be written as

N ~
Ay :Z i]('k)(hk_th)
k=1
1 < NGITY 2
B=720, (n2 - 12.,) (10)
13 ~
0,13 a0t -n)

Where A4, and h;.; denote the distance from the
shell reference surface (middle surface) to the outer
and inner surfaces of the k-th layer. Then, N is the

number of layers in the laminated shell and Q;k) is the

transformed reduced stiffness matrix for the k-th layer
which is defined as
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Where [T] is the transformation matrix for the
principal material coordinates and the shell coordinates
system and is defined as

cos’ a sin’ & sin2a
[T]=]| sin’a cos’a  —sin2a (12)
1. 1 .
——sin2a —sin2a cos2a
2 2

Where « is the orientation of the fibers and [Q]
is the reduced stiffness matrix which is defined as

_Qn 0, 0
[Q]: le sz 0 (13)
0 0 O

And the material constants in the reduced
stiffness matrix are given as

E
Q11 = 1
1=v,vy
v, E
0, = —2=n
1=vp,v,, (14)
E
sz = 2
1=v,v,,
0,=G,

Where E;; and E,, are the elastic modulus, G,
is the shear modulus and v;, and v,; are the
Poisson’s ratios. The strain energy of shell due to
hoop tension is [16]

(15)

Where the initial hoop tension due to centrifugal
force is defined as

22
Ng,e = pR Q (16)
Where p is the shell density. The kinetic energy

of the rotating shell is given by
(17)

T =

e

ph L.[ J’i 02+ w2+ 2Q0w —vw) Rd G
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Where #,V, W are the components of the velocity

in the x, 6, z direction, respectively. The strain energy

of the rings, by using averaging method is expressed as

g, Lﬁ{jEedA +GJ(122}6J} Rddx (18)
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Where E,, A, and G,J, are the elastic modulus,
cross sectional area and torsional stiffness of rings,
respectively. Then, / is the distance between rings. The
strain energy of the rings due to hoop tension, by using
averaging method is taken to be

1 Ou, 'l ov, ’
L2 roo ] | R\ o0
1
=y [TV 2
0 0. 1 ow,
+—=|v, -
{R[’ 69]}

Where the initial hoop tension of rings due to
centrifugal force is defined as

N,, =p, RO’ (20)

(19)

dA, Rd Odx

Where p, is the density of rings.
The kinetic energy of rings, by using averaging
method is given by
@1
o |ulview ]+
j” 200w, —vw )|dA RdOdx
Q2w ])
The strain energy of the stringers, by using

averaging method is expressed as
(22)

~—LL” jE 244, +G.J, Low, |\ paaa
g J IS R x 00 g

Where E,, A, and GJ; are the elastic modulus,
cross sectional area and torsional stiffness of stringers,
respectively. Then, d is the distance between stringers.
Also, it should be mentioned that the strain energy of
the stringers due to hoop tension is zero. The kinetic
energy of stringers, by using averaging method is
given by

(23)
L, AV W]
T, =2 [ ] [| 200w, v w,) |d4,RdOdx
O tw )

Where pis the density of the stringers. Total

strain energy includes the energy functional of the
shell, rings and stringers, by using averaging method
can thus be written as

ﬁ =Te +i +T.; _Ue _Uh,e
Appling Hamilton’s
averaging method results as

o t27lo ~
5J: Idt =0 25)

-U,-U0,,-U, @4

principles, by using
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The following matrix relationship can be
established as

a, a, a;|l4 0
Ay dy dy [§Br=10 (26)
a, a;, ay||C 0

For non-trivial solution of above equation, it
should be

an dp 4dp
Ay dy  Ay|=0 27)
az; 4y Ay

Expanding above equation, the characteristic
frequency equation can be obtained as

n 6 .5 n 4 n 3

ﬂ6a)mn +ﬂ5a)mn +ﬂ4a)mn +ﬂ3a)mn
5 2 P 3 28
+ﬂ2a)mn+ﬁla)mn +ﬂO:O ( )

It should be noted that for non-rotating shells, the
coefficient for odd powers of @, do not appear and

the coefficient for the term a):m will be zero for un-

stiffened rotating shells.

The solution for equation (28) is, the frequencies split
into two parts, one value corresponds to the backward
wave and other to the forward wave of the rotating
cylindrical shell respectively.

This split of the solution into two parts is
perceived as a bifurcation phenomenon for the
rotating cylindrical shell. When the shell is
stationary, these two values are identical. However,
when the cylindrical shell starts to rotate, the
standing wave will be transformed into backward or
forward waves depending upon the direction of
rotating. In fact a numerical calculation shows that
the absolute value of frequency of backward wave is
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always larger than that of forward wave. The figure
(1) shows only the absolute values.

Results and Discussions

A code is written in MATLAB software to solve
equations and to check the validity of the present
analysis and the code results, the natural frequencies
are compared with different works which are listed in
Tables 1-4.

Table 1 include the natural frequencies of an
isotropic cylindrical shell (non-rotating and un-
stiffened), Table 2 includes non-dimensional natural
frequencies of a rotating [0/90/0] laminated
cylindrical shell, Table 3 includes the natural
frequencies of an isotropic cylindrical shell (non-
rotating) with 20 stringers and 13 rings and Table 4
includes the natural frequencies of a non-rotating
[0/90/0] laminated cylindrical shell with stiffeners.
All the results show an adoption of the present
method to the other references.

Stiffeners effect on natural frequencies of [90/0/-
45/45]; laminated rotating cylindrical shell is studied
in Table 5 and Figure 1 for without rings, 5, 10, 20 and
30 rings. The results are drawn in Figure 1 for m=1
and »=3 with rotating speed and in Figure 2 for m=1
and »=1 until »=10 and 20 rings and different angular
velocities (0-50 rev/sec).

The results show that by increasing of angular
velocity until 20 (rev/sec), firstly forward natural
frequencies are decreased and then increased. It should
be mentioned that backward natural frequencies are
continuously increased by increasing of angular
velocity. By increasing the number of rings and
angular velocity, natural frequencies are increased,
too. For all content of »n, the fundamental mode is
constant and occurred in m=1 and »=3 but in higher
amounts.

Table 1. Natural frequencies (Hz) of an isotropic cylindrical shell (non-rotating), h=0.02 (in.), L=11.74 (in.), R=5.836 (in.),
density=0.000734 (Ib%in*), E=29500000 (Ib/in?), v=0.285

Natural frequencies (Hz)
n m=1 m=2
Bert et al. [1] Rath & Das [2] Present Bert et al. [1] Rath & Das [2] Present
(Love’s eq.) (SDST eq.) (Sander’s eq.) (Love’s eq.) (SDST eq.) (Sander’s eq.)
1 3271.0 3270.53 3270.51 4837.9 4837.67 4837.37
2 1862.3 1861.95 1861.76 3725.5 3724.98 3724.41
3 1102.0 1101.75 1100.37 2743.7 2742.61 2740.93
4 705.9 706.66 699.27 2018.5 2018.02 2013.49
5 497.9 497.47 475.65 1515.4 1514.96 1503.51

Table 2. Non-dimensional natural frequencies (@ = wR./p/E,,) of a rotating [0/90/0] laminated cylindrical shell, L/R=1,
h/R=1; h=0.002 (m), E{;=19 (GPa), E»,=7.6 (GPa), G;,=4.1(GPa), v{,=0.26, density=1643 (kg/mB)
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Angular Natural Frequencies (rad/s) and Non-dimensional Natural Frequencies, m=1
Velocity n Lam & Loy [6] Lee & Kim [7] Zhao et al. [8] Present
(rev/s) Backward [ Forward | Backward | Forward [ Backward | Forward | Backward | Forward
0.1 1 1.061429 | 1.061140 - - 1.061428 | 1.061139 | 1.061429 | 1.061140
0.1 2 0.824214 | 0.803894 - - 0.804212 | 0.803892 | 0.804214 | 0.803894
0.1 3 0.598476 | 0.598157 - - 0.598472 | 0.598183 | 0.598476 | 0.598187
0.1 4 0.450270 | 0.450021 - - 0.450263 | 0.450015 | 0.450270 | 0.450021
0.1 5 0.345363 | 0.345149 - - 0.345355 | 0.345140 | 0.345363 | 0.345149
0.1 6 0.270852 | 0.270667 - - 0.270840 | 0.270654 | 0.270851 | 0.270667
0.1 7 0.217651 | 0.217489 - - 0.217635 | 0.217473 | 0.217651 | 0.217489
0.4 1 1.061862 | 1.060706 | 1.061850 [ 1.060693 | 1.061862 | 1.060705 | 1.061862 | 1.060706
0.4 2 0.804696 | 0.803415 | 0.804691 | 0.803410 | 0.804694 | 0.803413 | 0.804696 | 0.803415
0.4 3 0.598915 | 0.597762 | 0.598912 [ 0.597759 | 0.598911 | 0.597758 | 0.598915 | 0.597762
0.4 4 0.450662 | 0.449667 | 0.450658 [ 0.449664 | 0.450654 | 0.449660 | 0.450661 | 0.449666
0.4 5 0.345724 | 0.344870 | 0.345719 | 0.344866 | 0.345714 | 0.344860 | 0.345723 | 0.344869
0.4 6 0.271207 | 0.270468 | 0.271200 [ 0.270461 | 0.271193 | 0.270454 | 0.271205 | 0.270466
0.4 7 0.218029 | 0.217382 | 0.218020 | 0.217373 | 0.218011 | 0.217364 | 0.218026 | 0.217379
1.0 1 1.062728 | 1.059836 | 1.062716 [ 1.059825 | 1.062728 | 1.059837 | 1.062729 | 1.059837
1.0 2 0.805667 | 0.802464 | 0.805660 | 0.802457 | 0.805664 | 0.802461 | 0.805666 | 0.802463
1.0 3 0.599820 | 0.596937 | 0.599814 | 0.596931 | 0.599813 | 0.596930 | 0.599817 | 0.596934
1.0 4 0.451513 | 0.449027 | 0.451506 [ 0.449019 | 0.451502 | 0.449015 | 0.451508 | 0.449022
1.0 5 0.346593 | 0.344459 | 0.346583 [ 0.344448 | 0.346577 | 0.344442 | 0.346586 | 0.344451
1.0 6 0.272197 | 0.270349 | 0.272182 | 0.270334 | 0.272174 | 0.270326 | 0.272186 | 0.270339
1.0 7 0.219269 | 0.217651 | 0.219248 | 0.217631 | 0.219240 | 0.217621 | 0.219255 | 0.217637

Table 3. Natural frequencies (Hz) of an isotropic cylindrical shell (non-rotating), h=0.00204 (m), R=0.203(m), L=0.813 (m),
E=207 (GPa), v=0.3, density= 7430 (kg/m3), with 20 Stringers: 0.004 (m) X 0.006 (m) and 13 Rings: 0.006 (m) X 0.008 (m)

n Natural Frequencies (Hz), m=1
ESDU [3] | Mustafa & Ali [4] Lee & Kim [7] Present (Averaging)
1 938 942 947 1037.8
2 443 439 458 472 .4
3 348 337 355 353.6
4 492 482 507 510.7
5 745 740 776 789.3

Table 4. Natural frequencies of a non-rotating [0/90/0] laminated cylindrical shell, L/R=4, h/R=0.005; h=0.001 (m), E;;=19
(GPa), E»=7.6 (GPa), G,=4.1(GPa), v|,=0.26, density=1643 (kg/m3), b,=b=0.002 (m), d,=d;=0.008 (m), E=E=3E,;, v=0.3

Natural Frequencies (Hz), m=1

Zhao et al. [8] Present Zhao et al. [8] Present

1 Stringers/Rings: 4/4 Stringers/Rings: 4/4 Stringers/Rings: 10/5 Stringers/Rings: 10/5
Avera&g Avera@g Averaﬁm Averaﬁ;%

1 553.7 651.4 549.7 653.5
2 288.4 292.3 299.8 298.1
3 291.6 234.7 305.2 246.9
4 470.6 259.7 486.7 382.0
5 734.6 561.8 756.8 596.6
6 1062.8 814.4 1093.8 864.4
7 1451.5 1113.3 1493.0 1181.2
8 1899.7 1457.7 1953.3 1546.2
9 2406.9 1847.4 2474.1 1959.0

Table 5. Natural frequencies of a non-rotating [90/0/-45/45], laminated cylindrical shell, R=0.2 (m), L=1 (m); h=0.002 (m),
E,;=139.4 (GPa), E,,=8.35 (GPa), G,,=3.1(GPa), density=1542 (kg/m’), b,=0.002 (m), d,=0.012 (m)




Journal of Space Science and Technology / 7

Effect of Rotating Speed and Stiffeners on Natural Frequency of Composite Shell Vol.4, No. 1 & 2, Spring and Summer 201 1

n Natural frequencies (Hz), m=1
Without rings 5 rings 10 rings 20 rings 30 rings
1 898.5 905.9 913.3 927.9 942.2
2 369.6 402.1 432.1 486.7 535.7
3 226.4 290.7 343.1 429.1 500.5
4 276.3 344.8 401.6 496.2 5753
5 417.0 478.1 532.2 626.2 708.2
6 604.5 660.7 712.5 805.9 889.6
7 829.6 883.8 934.9 1029.4 1115.7
8 1090.3 1144.7 1196.6 1294.0 1389.5
9 1386.1 1442.2 1496.1 1598.3 1694.3
10 1716.9 1775.7 1832.6 1941.3 2044.1
600
------- - Nr=0
— —®— Nr=0
= “o-#---- Nr=5
E —><— Nr=5
% --%-- Nr=10
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Figure 1. Natural frequencies of a rotating [90/0/-45/45]; laminated cylindrical shell, R=0.2 (m), L=1 (m); h=0.002 (m),
E1=139.4 (GPa), E=8.35 (GPa), G;,=3.1(GPa), density=1542 (kg/m’), b=0.002 (m), d,=0.012 (m)

2500
~
L 2000 —e—0=0
c.=? / —— =5
=

1500 Z _
g Q=10
=3 _

Q=20
£ 1000 -
- —k— Q=30
©
_ | [90/0/-45/15]s | | —e— 0=50
3 500 h=2mm, R=0.2, L=1m
TZU b=2mm, d=12mm Nr=20
0 . T
0 5 10 15
Wave Number (n)

Figure 2. Natural frequencies of a rotating [90/0/-45/45]; laminated cylindrical shell, R=0.2 (m), L=1 (m); h=0.002 (m),
E1=139.4 (GPa), E,=8.35 (GPa), G;,=3.1(GPa), density=1542 (kg/m’), b=0.002 (m), d,=0.012 (m)

Optimization of stiffener shape rectangular shape , C-shape, I-shape and € -shape.
Four shapes (Figure 3) are considered for stiffeners The details of these shapes are listed in Table 6. The
(both rings and stringers) in a rotating shell including dimensions of shell include thickness, radius and

length are considered as 0.002 (m), 0.2 (m) and 1.0
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(m), respectively. And also the angular velocity is
constant as 0.1(rev/s).
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Figure 3. Different shapes of stiffeners and their defined
dimensions [18]

Table 6. Geometric cross sectional data
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has the highest value of fn,3 and the C -shape has
the lowest value.

Table 7. The ratio of natural frequencies to weights for
different stiffener shapes

. Ratio of natural frequencies to
Stiffener Shape weights (HZ/K&),‘&," (m=1)
Types Types

n=1 n=2 n=3 n=4
Rings Rectangular | 5, ¢75 | 15775 | 15.442 | 26240
Stringers Rectangular
Rings C-Shape 34893 | 14773 | 11291 | 16.855
Stringers | C-Shape
Rings I-Shape 32518 | 15223 | 14610 | 25.721
Stringers I-Shape
Rings R
£ Q-Shape | 1, 400 | 14693 | 11626 | 17681
Stringers () Shape

Shape Types [ Constants | Dimension | Contents
b,=b, m 0.002
d,=d, m 0.010
Rectangular A=A, ) 3000 * 107
b,=b, m 0.004
t=t, m 0.001
k.=k, m 0.004
C-Shape = = m 0.003
A=A, m’ 2.000 * 107
b,=b, m 0.008
t=t, m 0.001
k. =k, m 0.002
I-Shape a,=a; m 0.004
S,=S8, m 0.004
A,=4, m’ 2.000 *107
b,=b, m 0.004
t,=t, m 0.001
k.=k m 0.004
Q) -Shape | a=a m 0.004
§,=S; m 0.001
2,=gs m 0.001
A,=A, m’ 2.000 * 107

The results are listed in Table 7 for stiffened
shell by10 rings and 10 stringers. The target of this
optimization is to maximize the defined parameter,
Jfmn (‘ratio of natural frequencies to weights) . As it
can be seen in the Table 7, for different contents of
m and n, the C-shape has the highest value of fm,/
and the I- shape has the lowest value. But for
contents of m=1 and n = 3, the rectangular -shape

Conclusion

Free vibration analysis of simply supported rotating
cross-ply laminated stiffened cylindrical shell is
performed by using an energy approach, Reilly-Ritz
method and Sander’s relations. A good adoption is
observed between the present results and other
literatures in different type of results including
isotropic shells, rotating laminated shells, stiffened
isotropic shells and stiffened laminated shells.

Then, the results show that

- The stiffeners have a little effect on natural
frequencies until the fundamental frequency but
more than fundamental frequency, the change
in natural frequencies is performed in a higher
rate.

- By increasing the numbers of stiffeners, by using
averaging method, the results are more
accurate.

- By using an analytical approach based on simple
functions for shape mode, it can be obtained
accurate results without wusing complex
relations.

- By increasing the numbers of rings, natural
frequencies are increased, too.

- Backward natural frequencies are continuously
increased by increasing of angular velocities in
un-stiffened and stiffened shells but forward
natural frequencies are first decreased and then
increased.

- The number of frequency of fundamental mode is
not changed by increasing of angular velocity.

- It is found that the C-section and rectangular
section stiffeners are more efficient for
stiffening the shells, respectively, for the
first mode and the fundamental mode to
maximize the defined parameter, fim,n.

- It should be noted the modes number is
significant for multidisciplinary optimization of
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stiffened  cylindrical shell under natural
frequency and weight constraints.
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