Authors

Abstract

New algorithm is presented in this paper for attitude determination of LEO nanosatellite with 2 accuracy in attitude determination independent of time. The most important limitation in nanosatellites is about subsystems’s masses so, reduction of subsystems’s masses is always considered. ADS plays the important role in the successful orbital maneuver missions. ADS accuracy is connected with increasing of sensors and complex processors which lead to increase the ADS mass. The presented algorithm uses one magnetometer sensor and one horizon sensor and position data receiving by GPS sensor as minimum required sensors. The selected configuration is resulted to minimum ADS mass and mission cost. Finally, error analysis at two most important orbit zones is done and the performance of the presented algorithm is confirmed.

Keywords

  1. Tuthill, J., Design and Simulation of a NanoSatellite Attitude Determination, (M. Sc. Thesis), United States  Navy, 2001.
  2. Kristian Svartveit, Attitude Determination of the NCUBE Satellite, (M. Thesis), Department of Engineering Cybernetics, June 2003.
  3. رهی، عباس، ستوده، رحیم و سایر همکاران، طراحی سیستم تعیین و کنترل وضعیت نانوماهوارهMUT sat2 ، مجتمع دانشگاهی هوافضا، دانشگاه مالک اشتر، گزارش شماره SRI/G1-ER-1388-100026 ، 1388.
  4. Parikh, N., Low-Cost Multi Global Positioning System for Short Baseline Attitude Determination, (M. Thesis), the Faculty of the Russ College of Engineering and Technology of Ohio University, November 2006.
  5. Bae, J., Kim, Y. and Seob Kim, H., “Satellite Attitude Determination and Estimation Using Two Star Trackers,” AIAA Guidance, Navigation and Control Conference, Toronto, Ontario Canada, August 2010.
  6. Hart, Ch. S., “Satellite Attitude Determination Using Magnetometer Data Only,” 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 2009.
  7. Tittrton, D. H., Weston, J. L., “Strapdown Inertia Navigation Technology,” Progress in Astronautics and Aeronautics, USA, 2004.
  8. Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA, Inc., Reston, August 2000.
  9. آدمی، امیرحسین. طراحی فضاپیمای بازگشت‌پذیر هدایت شونده، (پایان‌نامه کارشناسی ارشد)، دانشگاه صنعتی مالک اشتر، مجتمع هوافضا، 1386.
  10. نصرت‌الهی، مهران، آدمی، امیرحسین و دهقانی، محمود. «تدوین نرم‌افزار گرافیکی شبیه‌ساز حرکت شش درجه آزادی فضاپیمای بازگشت‌پذیر»، هشتمین کنفرانس بین‌الملی هوافضا، اصفهان، IAS2009-MF652، 1387.
  11. Roascio, D., Reyneri, L. M., Sansoé, C. and Bruno, M., “Small Satellite Attitude Determination with RF Carrier Phase Measurem,” International Astronautical Congress, Daejeon, Republic of Korea, 2009.
  12. Rohde, J., Kalman Filter for Attitude Determination of Student Satellite, (M. Sc. Thesis), Norwegian University of Science and Technology, Department of Engineering Cybernetics, July 2007.
  13. Gebre, D. Roger, C. Hayward, J. and Powell, D. “Design of Multi-Sensor Attitude Determination Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 2, Aprill 2004.
  14. Vega, K. Auslander, D. and Pankow, D., “Design and Modeling of an Active Attitude Control System for CubeSat Class Satellites”, AIAA Modeling and Simulation Technologies Conference, Chicago, Illinois, AIAA, August 2009.