نویسندگان

چکیده

در این مطالعه، رفتار مکانیکی آداپتور کامپوزیتی ماهواره‌بر (سازة مشبک مخروطی) مورد تحلیل و بررسی قرار گرفته است. در ابتدا، پارامترهای هندسی سازة مشبک مخروطی بررسی و با انتخاب بهترین مسیر برای پیچش الیاف (مسیر ژئودسیک)، معادلات هندسی آن استخراج و سپس با توجه به این معادلات، ماتریس سفتی معادل به‌دست می‌آید. در نهایت با مدل‌سازی اجزای محدود یک نمونه، رفتار مکانیکی نتیجه شده از روش حل تحلیلی با روش اجزای محدود مقایسه شده است. نتایج عددی و تحلیلی نشان می‌دهد که با افزایش ضخامت و پهنای ریب کرنش در جهت محوری سازه به‌صورت غیرخطی کاهش می‌یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Governing Equations in Mechanical Analysis of Satellite Carrier Adapter

نویسندگان [English]

  • J. Eskandari Jam
  • M. Noorabadi
  • S. H. Taghavian
  • N. Garshasbi-Nia

چکیده [English]

In this paper the mechanical behavior of satellite carrier adapter made of composite lattice shell is examined. First, the geometrical parameters of the composite lattice shell are analyzed. Choosing the direction for winding the fibers (geodesic route), geometric equations of the structure is elicited. Then, stiffness matrix of the structure is obtained according to these equations. Finally using finite element modeling of a conical lattice shell sample, the comparison between finite element and analytical results are presented. The analytical and numerical results show that with increasing rib’s thickness and Width, axial strain of the structure decreases nonlinearly.

کلیدواژه‌ها [English]

  • Carrier adapter
  • Composite lattice shell
  • rib
  • FEM
  1. Vsiliev, V. V., Baryin, V. A. and Rasin, A. F., “Anisogrid Lattice Structures Survey of Development and Application,” Composite Structures,” 54, Issues 2-3, 2001, pp. 361-370.
  2. Bunakov, V. A., Design of Axially Compressed Composite Cylindrical Shellswith Lattice Stiffeners, Optimal Design, Editors, Vasiliev, V. V. and Gürdal, Z., Technomic Publishing USA, 1999, pp. 207-246.
  3. Rasin, A. and Vasiliev, V. V., “Development of Composite Anisogrid Spacecraft Attach Fitting,” Proc. of the 11th European Conf. on Composite Materials, Rhodos, Greece, May 31–June 3, 2004.
  4. Poulsen, C. , “Geodetic Construction, How the Vickers–Armstrong Wellington is Built: Solving Novel and Sometimes Difficult Production Problems”, Aircraft Production, 1940, pp. 143–148.
  5. Chen, H. and Tsai, S. W., “Analysis and Optimum Design of Composite Grid Structures”, Journal of Composite Materials, Vol. 30, No. 4, 1996, pp. 503-534.
  6. Totaro, G. and Gürdal, Z., "Optimal Design of Composite Lattice Shell Structures for Aerospace Applications", Aerospace Science and Technology, Vol. 13, Issues 4-5, 2009, pp. 157–164.
  7. Vsiliev, V. V. and Rasin, A. F., “Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications”, Composite Structures, Vol. 76, Issues 1-2, 2006, pp. 182-189.
  8. Morozov, E. , Lopatin, A. V. and Nesterov, V. A., “Finite Element Modelling and Buckling Analysis of Anisogrid Composite Lattice Cylindrical Shells,” Composite Structures, Vol. 93, Issue 2, 2011, pp. 308–323.
  9. Morozov, E. , Lopatin A. V. and Nesterov, V. A., “Buckling Analysis of Anisogrid Composite Lattice Conical Shells,” Composite Structures, Vol. 93, Issue 12, 2011, pp. 3150–3162.