پیش­بینی هوشمند موقعیت مداری ماهواره به کمک سری­های زمانی

نویسندگان

چکیده

در این مقاله، هدف ارائة دیدگاه نوینی در مبحث پیش­بینی موقعیت ماهواره است. از آنجا که تمامی روش‌های فعلی مبتنی بر معادلات کپلر هستند، به دلیل ساده­سازی در محاسبات، اغتشاشات مداری، توفا‌ن‌های خورشیدی، گرانش اجرام سماوی و غیره در نظر گرفته نمی­شود. روش پیشنهادی این مقاله، استفاده از روش‌های هوش مصنوعی در پیش­بینی سری­های زمانی، برای پیش­بینی موقعیت ماهواره با استفاده از داده‌های واقعی است. مزیت استفاده از داده­های واقعی، درنظرگرفتن تمامی اغتشاشات مؤثر بر مدار است. برای این منظور استفاده از پارامترهای TLE، به عنوان در دسترس­ترین داده­های واقعی در دستور کار قرار گرفته است. مقایسة نتایج روش پیشنهادی با داده­های واقعی، نشان از دقت بالای روش پیشنهادی دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Intelligent Satellite Orbit Prediction Based on Time Series Analysis

نویسندگان [English]

  • D. Bustan
  • N. Pariz
  • S. K. HosseiniSani
چکیده [English]

In this paper, a new approach for orbital position prediction of satellites, is introduced. As traditional methods are based on keplerian equations of motion, orbital disturbances are uasualy neglected for simplicity. This paper, suggests artificial intelligent time series peridiction methods for orbital position prediction of satellites. The advantage of this method is based on usage of actual data, so all disturbances are taken into account. For this reason use of TLE as the most reachable actual data is considered. Compariosion of output of this method with actual data, proofs the accuracy of proposed method.

کلیدواژه‌ها [English]

  • prediction
  • TLE
  • time series
  • Orbital position
  • Artifitialintelligence