طراحی قانون کنترلی PID و فیدبک کواترنیون و پیاده‌سازی در شبیه‌ساز ماهواره مجهز به عملگرهای ژیروسکوپی

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

2 دانشکدة مهندسی هوافضا، دانشگاه خواجه نصیرالدین طوسی

چکیده

اخیراً،  تمایل به استفاده از ماهواره‌های کوچک به دلیل هزینة پایین، سرعت بالا و  سادگی طراحی، ساخت و پرتاب افزایش پیدا کرده است. در برخی از مأموریت‌ها نیاز به مانورهای سریع بسیار حائز اهمیت است. در این مقاله، طراحی و پیاده‌سازی عملی کنترل وضعیت شبیه‌ساز سه درجه آزادی ماهواره چابک - مجهز به ژایروهای کنترل ممان تک‌جیمبال با آرایة هرمی- با به کارگیری قانون کنترلیPID و راهبردی  فیدبک کواترنیون در دو حالت مختلف بهره و  به صورت یک و سه محور یارائه می‌شود.  ابتدا، عملگرها و  شبیه‌ساز ماهواره معرفی‌شده و راهبردی کنترلی با استفاده از  سیمولینک/ متلب شبیه‌سازی می‌شود. سپس استراتژی کنترلی در سیستم پیاده‌سازی شده و آزمایش‌های کنترل وضعیت اجرا می‌شوند. در نهایت،  نتایج حاصل از  تست‌های تجربی با هم و  نیز با نتایج  تئوری مقایسه می‌شوند. به منظور فرار از شرایط تکینگی منطق‌ هدایت SR  استفاده شده است. نتایج بیانگر تحقق مانور سریع شبیه‌ساز و مطابقت خوب نتایج  تئوری با نتایج تجربی است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing and Implemntation of PID and Feed back Quaternion Control Strategies for Three Axis Satellite Simulator Equipped With Control Moment Gyros Actiatprs

نویسندگان [English]

  • A. R. Aghalari 1
  • J. Tayebi 2
چکیده [English]

Recently, many researchers are examining the possibility of the small satellites or micro satellites, because small satellites are easier and faster to develop and thereby, provide increased launch opportunities. In this paper designing and experimental testing of three axis agility satellite simulator - equipped with pyramid configuration of SGCMG- with implementation of PID and feedback quaternion strategies are presented. These control strategies in the two different control gains and two different type of maneuvering about single and three axis are presented. First actuators and simulator of satellite have introduced and control strategies are simulated in Matlab/Simulink software. Then control strategies have implemented in the simulator’s computer and attitude control testing is executed. Finally the experimental data are compared with simulation results. In order to avoiding of singularity condition, SR method is used in steering law of single control moment gyros system. Results shown that agility maneuver of simulator realized and numerical results are almost according to experimental tests.

کلیدواژه‌ها [English]

  • Attitude control
  • Agility satellite
  • Single gimbal control moment gyroscope
  • Simulator of satellite
  • PID
  • Feed back quaternion strategy
  • Steering law

 [1]    Berner, R., “Control Moment Gyro Actuator for Small Satellite Application,” )M. Sc. Thesis), Department of Electrical and Electronic Engineering, University of  Stellenbosch, 2005.

 [2]    Jacot, A.D. and Liska, D.J., “Control Moment Gyros in Attitude Control,”  Journal of Spacecrafts and Rockets, Vol. 3., 1966, pp. 1313-1320.

 [3]    Margulies, G. and Aubrun, J.N., “Geometrical Theory of Single Gimbal Control Moment Gyro System,” Journal of the Astronautical Sciences, Vol. XXVI, No.2, 1978, pp.159-191.

 [4]    Bedrossian, N.S. and et. al., “Redundant Single Gimbal Control Moment Gyroscope Singularity Analysis,” Journal of Guidance, Vol. 13, No. 6, 1990.

 [5]    Bedrossian, N.S. and et. al., “Steering Law Design For Redundant Single Gimbal Control Moment Gyroscopes,” Journal of Guidance, Control, and Dynamics, Vol. 13, No.6, 1990, pp. 1083-1089.

 [6]    Vadali, S. R. and et. al., “Preferred Gimbal Angles for Single Gimbal Control Moment Gyroscopes,” Journal of Guidance, Control and Dynamics, Vol. 13, No. 6, 1990, pp. 1090-1095.

 [7]     Oh, H.S. and Vadali, S.R., “Feedback Control and Steering Laws forSpacecraft Using Single Gimbal Control Moment Gyros,” Journal of the Astronautical Sciences, Vol. 39, No. 2, 1991, pp. 183-203.

 [8]    Meffe, G. and Stocking, M., “Momentum Envelope Topology of Single Gimbal CMG Arrays for Space Vehicle Control,” Proceedings of AAS Guidance and Control Conference, Keystone, CO, 1987.

 [9]    Kurokawa, H. “Constrained Steering Law of Pyramid-Type Control Moment Gyros and Ground Tests,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, 1997, pp. 445-449.

[10]  Wie, B. and et. al., “Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros,” Journal of Guidance, Control and Dynamics, Vol. 24, No. 5, 2001, pp. 865-871.

[11]  Lappas, V. J. and et. al., “Attitude Control for Small Satellites Using Control Moment Gyros,” 52nd IAF, 2001.

[12]  Tekinalp, O. and Yavuzoglu, E., “A New Steering Law for Redundant Control Moment Gyroscope Cluster,” Journal of Aerospace Science and Technology, Vol. 9, No. 7, 2005, pp. 626-634,.

[13]  Kown, S. W. and et. al., “Fixed-Star Tracking Attitude Control of Spacecraft Using Single-Gimbal Control Moment Gyros,” American Journal of Engineering and Applied Sciences, 2010.

[14]  Harland, D.M. and Lorenz, R.D., Space Systems Failures, Springer-Praxis, 2005.

[15]  KrishnaKumar, K., “Adaptive Neuro-Control for Spacecraft Attitude Control,” Proceedings of the Third IEEE Conference, Aug. 1994.

[16]  Unnikrishnan, N. and et. al., “Dynamicre-Optimization  of A Spacecraft Attitude Controllerinthe Presence of Uncertainties,” 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Germany, Oct. 2006.

[17]  Makunis, W., “Adaptive Satellite Attitude Control in the Presense of Inertia And CMG Gimbal Friction Uncertainties,” Journal of the Astronautical Sciences, Vol. 56, No. 1, 2008, pp. 121–134.

[18]  Aghalari, A., Faghihinia, A., “PD and Feedback Quaternion Control Strategy for Attitude Control of a Satellite Equipped with Four Single Gimbal Control Moment Gyro,” 10th Iranian Aerospace Society Conference, TarbiatModarres University, 1389, (In Persian).

[19]  Aghalari, A., Kalhor, A., Dehghan, S. M. and Abedian, A., “Designing, Testing and Evaluation of Single Gimbal Control Moment Gyro for Microsatellite,” Jorunal of Space Science and Technology (JSST), Vol. 2, No. 3, p.p.13-23, 1388, (In Persian).

[20]  Aghalari, A., Study on Satellite Simulators, Designing and Fabrication of A Single Gimbal Control Moment Gyro for Simulator, Technical Report, Aerospace University Complex, 1389, (In Persian).

[21]  Kalhor, A., Cheheltani, S. H., Designing and Integration of Electronics and Computer Parts of Satellite Simulator With Single Gimbal Control Moment Gyros, Technical Report, Aerospace University Complex, 1390, (In Persian).

[22]  Aghalari, A., Kalhor, A., Dehghan, S. M., and Cheheltani, S. H., “Design, Manufacturing and Test of a Three-Degree-of-Freedom Attitude Control Simulator for an Agile Micro-Satellite Based on Single Gimbal Control Moment Gyros,” Jorunal of Space Science and Technology (JSST), Vol. 7, No. 3, 1393, pp. 51-67, (In Persian).

[23]  Available, [on line]: http://www. Microstrain. com, Access Date, 2010.

[24]  Nakamura, Y., Hanafusa, H., “Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control,” Journal of Dynamic Systems, Measurement, and Control, Vol. 108, Vol. 3, 1986, pp.163-171.

[25]  Wie, B., Lu, J., “Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slow Rate And Control Constraints,” Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-Located Conferences, Vol. 18, No. 6, 1995.