شناسایی انواع مکانیزم‌های بازشوندۀ فضایی

نوع مقاله: مقالة‌ مروری‌

نویسندگان

1 دانشکدة مهندسی مکانیک، دانشگاه علم و صنعت ایران

2 دانشکده مهندسی مکانیک, دانشگاه علم و صنعت ایران

3 دانشکدة مهندسی راه آهن، دانشگاه علم و صنعت ایران

چکیده

به مجموعه‌ای از اجزای مکانیکی که به یکدیگر متصل یا در تماس‌ است و می‌تواند نسبت به هم حرکت کند مکانیزم گفته می‌شود. حال اگر این مکانیزم‌ها قابلیت استفاده در محیط فضا را داشته باشد، مکانیزم‌های فضایی نامیده می‌شود. از مکانیزم‌های فضایی در مأموریت‌های فضایی استفاده گسترده‌ای می‌شود. اهمیت تحقیق و توسعۀ طراحی و ساخت این مکانیزم‌ها ازآنجا مشخص می‌شود که تاکنون بسیاری از مأموریت‌های فضایی بر اثر نقص عملکرد مکانیزم‌ها با شکست روبه ‌رو شده است. مکانیزم‌های باز شوندۀ  فضایی براساس هندسه و کارایی به انواع مختلفی تقسیم می‌شود. در این مقاله، انواع مکانیزم‌های بازشوندۀ فضایی بررسی و مزیت‌ها و محدودیت‌های هریک معرفی می‌ شود. از امتیازهای این مقاله، اشاره به تمامی انواع مدل‌های مکانیزم‌های فضایی از آغاز سفرهای فضایی تاکنون است و از این جنبه مرور کامل و جامعی به شمار می‌ آید. این ویژگی مقاله، آن را به عنوان یک مرجع منحصربه‌ فرد و دارندۀ اطلاعات مکانیزم‌های جدید در زمینۀ فضایی برای استفاده در صنعت فضایی کشور مطرح می‌ کند.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of Space Deployable Mechanisms

نویسندگان [English]

  • Hosein Mansori-Nezhad 1
  • Kamran Daneshjoo 2
  • Majid Shahravi 3
چکیده [English]

The mechanism is a set of mechanical components that are connected and can move relative to each other. If it can be used in space, it is called space mechanism. The space mechanisms are widely used in space missions. Many space missions have been failed due to malfunction of space mechanisms. This clears the importance in research and development of space mechanism. The deployable mechanisms are categorized based on geometry and performance. A variety of space deployable mechanisms are investigated and their advantages and limitations are introduced in this paper. All types of space mechanisms which have been used since the beginning of space travels are covered in this paper, hence this paper is a thorough review paper on this topic. This feature of paper, makes it unique in the field of information about new space mechanisms and usable in the country space industry.

کلیدواژه‌ها [English]

  • Space deployable mechanism
  • Space boom
  • Spacecraft Deployable antenna
  • Space Inflatable devices

       [1]           Daneshjou, K. Nami, M. Fakoor, M. Daneshjou, Z., Design principles of satellite deployable devices, Islamic Azad University, 2013. (in Presian)

       [2]          Ley, W., Handbook of Space Technology, (Library of Flight), AIAA, 2009.

       [3]          Wertz, J.R., Spacecraft Attitude Determination and Control, Springer Science & Business Media, 1978.

       [4]          Conley, P.L., Space Vehicle Mechanisms,Sedona: Wiley, 1998.

       [5]          Fusalo, R.L., Nasa Space Mechanism Handbook: NASA/TP, 1999

       [6]          Boesiger, E.A.,“37th Aerospace Mechanisms Symposium.” 2004.

       [7]          Nakaya, K. and et.al.,“Tokyo Tech CubeSat: CUTE-I,” Presented at the AIAA 21st International Communications Satellite Systems Conference and Exhibit, 2003.

       [8]          Dugundji, M.L.B.J., “Joint Damping and Nonlinearity in Dynamics of Space Structure," Proceedin of the Structures, Dynamics and Materials Conference, Apr, 1988.

       [9]          Höhn, P., Design, Construction and Validation of an Articulated Solar Panel for CubeSats, 2010.

    [10]          Gralewski,M.R., Adams,L. and Hedgepeth, J.M., “Deployable Extendable Support Structure for the RADARSAT Synthetic Aperture Radar Antenna," IAF, International Astronautical Congress, 43rd Washington, Aug. 28-Sept. 5, 1992. 18 p

    [11]          MARTIN, K., “Evaluation from Hinge Actuator Mechanism to an Amenna Deploymem Mechanism for Use on the European Large Communiction Satellite,” 18th Aerospace Mechanisms Symposium,1984

    [12]          Vyvyan, W.W., “Self-Actuating, Self-Locking Hinge,” U.S. Patent US3,386,12804-Juni,1968

    [13]          Baghdasarian,V.G., “Hybrid Solar Panel Array,”U.S. Patent EP0754625A1.

    [14]          Duperray, A.D.B. and Sicre, J., “Automotive, Self-Locking and Damping Articulated Joint and Articulation Equipped With Same,” U.S. Patent US 2001/0037538 A108-Nov-2001.

    [15]          Pellegrino, S. and Watt, M., “Tape-Spring Rolling Hinges,” Proceedings of the 36 Aerospace Mechanisms Symposium, Glenn Research Center, 2002.

    [16]          Lorenzini, M. L. C. a. E. C., Tethers In Space Handbook, NASA Marshall Space Flight Center, Third Edition, 1997

    [17]          Herzl, G.G., Tubular Spacecraft Booms: Extendible, ReelStored: Lockheed Missiles & Space Company, 1970.

    [18]          Heber, M. L.-B., “Heliopause Explorer – A Sailcraft Mission to the Outer Boundaries of the Solar System”, 2001

    [19]          Zhong, Y., Chu, Y.L. and Dan, Li, “Dynamics and Robust Adaptive Control of a Deployable Boom for a Space Probe,”Acta Astronautica, Vol. 97, April–May 2014, P.P. 138-150.

    [20]          Jensen, F. and Pellegrino, S., “Arm Development Review Of Existing Technologies”, Cambridge Univ. (United Kingdom), Dept. of Engineering, 2001.

    [21]          Herzi, G.G., “Tubular Spacecraft Booms (Extendible, Reel Stored),” Lockheed Missiles and Space company, 1970.

    [22]          Bourrec,L., “Telescopic Boom for Space Applications Engineering Model,” Presented at the 14th European Space Mechanisms & Tribology Symposium – ESMATS Constance, Germany, 2011.

    [23]          Pelegrino, S., “Foldable Composite Structures,” Department of Engineering, University of Cambridge, Vols. CB21PZ, UK, 2003.

    [24]          Meyers, S.,“Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission,” 37th Aerospace Mechanisms Symposium, Johnson Space Center, 2004

    [25]          Soykasap,O.,“Micromechanical Models for Bending Behaviour of Woven Composites,” Journal of Spacecraft and Rockets, Vol. 43, 2009, pp. 1093-1100.

    [26]          Sefen,K.A. and Pellegrino,S.,“Deployment Dynamics of Tape Springs”,Proceedings of the Royal Society of London Series A, Vol. 455, 1999, pp. 1003-1048.

    [27]          Daniel, C. Williams, M., USAF, “Empirical Characterization of Unconstrained Tape Spring Deployment Dynamics,” Department of the EPARTMENT  Air ForceAFIT/ GSS/ENY/ 12-M07.

    [28]          Marks, G. W.,“The Lightweight Deployable Antenna for the MARSIS Experiment on the Mars Express Spacecraft,”Proceedings of the 36th Aerospace Mechanisms Symposium, Glenn Research Center, May 14-17, 2002.

    [29]          Puig, B. L. andRando,N.,“A Review on Large Deployable Structures for Astrophysics Missions”, Acta Astronautica, Vol. 67, Issues 1–2, 2010, pp. 12-26

    [30]          Tibert, G., “Deployable Tensegrity Structures for Space Applications,” (PhD Thesis), 2002.

    [31]          Warden, R.M. and Jones, P.A., “Carousel Deployment Mechanism for Coilable Lattice Truss,” 23rd, Aerospace Mechanisms Symposium, 1989.

    [32]          Pellegrino, S. and Stohlman, O. R. “Shape Accuracy of a Joint-Dominated Deployable Mast,”California Institute of Technology, Pasadena, CA 91125.

    [33]          Tan, Z.Q., “Analysis of Mechanism Reliability in Anti-Dislocation Locking of Space Cable-Strut Deployable Articulated Mast,” Advanced Materials Research, Vol. 753-755, 2013, pp.1145-1150.

    [34]          Hongwei Guoa, R.L., Deng, Z., Zhang, J., “Dynamic Characteristic Analysis of Large Space Deployable Articulated Mast,” Procedia Engineering, Vol. 16, 2011, pp. 716-722.

    [35]          Nagaraj, B.P., Pandian, R. and Ghosal, A., “Kinematics of Pantograph Masts,” Mechanism and Machine Theory, Vol. 44, Issue 4,2009, pp. 822-834.

    [36]          Joachim Block, M.S. and Wiedemann, M., “Ultralight Deployable Booms for Solar Sails and other Large Gossamer Structures in Space,” Acta Astronautica, Vol. 68, Issues 7–8, 2011, pp. 984-992.

    [37]          Morozov, E.V. and Lopatin, A.V.,“Design and Analysis of the Composite Lattice Frame of a Spacecraft Solar Array,” Composite Structures, Vol. 93, Issue 7, 2011, pp. 1640-1648.

    [38]          Xin Zhang, L., Feng Bai, Zh., Zhao, Y. and Bin Cao, X., “Dynamic Response of Solar Panel Deployment on Spacecraft System Considering Joint Clearance,” Acta Astronautica, Vol. 81, Issue 1, 2012, pp. 174-185.

    [39]          Fortescue, P., Spacecraft System Engineering: A John Wiley & Sons, Ltd., Publication, Fourth Edition. 2011.

    [40]          Morozov, E. and Lopatin A., “Analysisand Design of The Flexible Composite Membrane Stretched on the Spacecraft Solar Array Frame,” Composite Structures, Vol. 94, 2012, pp. 3106-3114.

    [41]          Foster,C. L., Tinker,M. L., Nurre,G. S. and Till,W. A, “Solar-Array-Induced Disturbance of the Hubblespace Telescope Pointing System,”Journal of Spacecraft and Rockets, Vol. 32, 1995, pp. 634-644.

    [42]          Wiedemann,M. and Sinapius, M.,Adaptive, Tolerant and Eficient Composite Structures, Springer Science & Business Media, 2012.

    [43]          Kojima,Y., “Dynamic Simulation of Stick–Slip Motion of a Flexible Solar Array”,Control Engineering Practice, Vol. 16, Issue 6, 2008, p.p. 724-735.

    [44]          Winslow,C., “Space Station Freedom Solar Array Design Development,”IEEE Aerospace and Electronic Systems Magazine, Vol. 8, 1993, pp. 3-8.

    [45]          Available, [On-line]: http://iss.jaxa.jp/iss/13a/ mission/payload/s3_s4truss/.

    [46]          Benson, S.W., “Solar Power for Outer Planets Study”, in Presentation to Outer Planets Assessment Group, /NASA Glenn Research Center.

    [47]          Available, [On-line]:https://www.nasa.gov/pdf/ 491544 main_orion book_web.pdf.

    [48]          Imbriale, W.A., Space Antenna Handbook, wiley, 2012.

    [49]          Imbriale, W.A., Spaceborne Antennas for Planetary Exploration, John Wiley & Sons, Inc, 2006

    [50]          Yuen, J.H. and Imbriale,W.A., Spaceborne Antennas for Planetary exploration, Vol. 12: John Wiley & Sons, 2006

    [51]          Hachkowski, M. and Peterson, L., "A Comparative Study of the Precision of Deployable Spacecraft Structures”, CU-CAS-951995.

    [52]          Brandon, E.J., “Structural Health Management Technologies for Inflatable/Deployable Structures: Integrating Sensing and Self-Healing”,Acta Astronautica, Vol. 68, Issues 7–8, April–May 2011, pp. 883-903.

    [53]          Cadogan, M. G. D., “Inflatable Space Structures: A New Paradigm For Space Structure Design,”49th International Astronautical Congress, 1998.

    [54]          Schenk, M., Viquerat, A. D., Seffen, K. A. and Guest,S. D., Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization,” Journal of Spacecraft and Rockets, Vol. 51, 2014, pp. 762-778.

    [55]          Bernasconi, W.J. R. M.C., “Inflatable, Space-Rigidized Support Structures for Large Spaceborne Optical Interferometer Systems,”Acta Astronautica, Vol. 22, 1990, pp. 145-153.

    [56]          Bernasconi, M.C., “Inflatable, Space-Rigidized Structures. Overview of Applications And Their Technology Impact,” Acta Astronautica, Vol. 14, 1986, pp. 455–465.

    [57]          Cadogan, D. P. “Deployment Control Mechanisms for Inflatable Space Structures,” 33 Aerospace Mechanisms Conference – May 1999.

    [58]          D., Cui, “An Overview of Dynamics Modeling of Inflatable Solar Array,” 2nd International Conference on Advances in Energy Engineering (ICAEE), 2011.

    [59]          Available, [On-line]: http://www.witpress.com/Secure /elibrary/papers/9781853129414/9781853129414010 FU1.pdf

    [60]          Freeland, R., Bilyeu,G.,Veal, G.,Steiner, M. and Carson, D.,“Large Inflatable Deployable Antenna Flight Experiment Results,” Acta Astronautica, Vol. 41, 1997, pp. 267-277.

    [61]          “Spartan 207/Inflatable Antenna Experiment,”NASA Goddard Space Flight Center, February 14, 1997.

    [62]          Lin, J. K. H.,“Concept Study of a 35-m Spherical Reflector System for NEXRAD in Space Application,”47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2006.

    [63]          Katsumata, N.,“Analysis of Dynamic Behaviour of Inflatable Booms in Zigzag and Modified Zigzag Folding Patterns,”Acta Astronautica, Vol. 93, January 2014, Pages 45-54.

    [64]          Szyszkowski,W. andGlockner,P.G.,“Inflatable Booms and Pneumatic Hinges: An Application in Deployment of Satellite Sensors,”Engineering Structures, Vol. 13, Issue 4, 1991, pp. 357-365.

    [65]          Sapna, G.H.,“Inflatable Boom Controlled Deployment Mechanism for the Inflatable Sunshield In Space (ISIS) Flight Experiment,”34th Aerospace Mechanisms Conference, 2000.

    [66]          Sandy, C.R.,“Next Generation Space Telescope Inflatable Sunshield Development,”0-7803-5846-5/00/$10.00 © 2000 IEEE.

    [67]          Marraffa,D. K. L. andBaglioni, P.,“Inflatable Re-Entry Technologies: Flight Demonstration and Future Prospects,”Esa, Bulletin 103, 2000.

    [68]          Marraffa L. and Kassing,K.,“Inflatable Re-Entry Technologies: Flight Demonstration and Future Prospects,”Esa, Bulletin 103, august 2000.

    [69]          Available, [On-line]: “Inflatable Re-entry Demonstrator Technology (IRDT),” www. spaceflight. esa.int/irdt/ factsheet.pdf.