بررسی اثر نوع بیان سینماتیک در کنترل وضعیت فضاپیما با روش خطی‌سازی پسخورد

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه شهید بهشتی - دانشکده مهندسی فناوری های نوین

2 دانشگاه شهید بهشتی

چکیده

استفاده از تئورهای کنترل غیرخطی در مسئله کنترل وضعیت فضاپیما رایج و مرسوم می‌باشد. تئوری خطی‌سازی پسخورد یک روش کنترل غیرخطی است که سعی در خطی‌سازی دینامیک‌های غیرخطی سیستم دارد. انتخاب خروجی در این تئوری کنترلی، اثر مستقیمی بر پایداری سیستم خواهد داشت. به‌منظور کنترل وضعیت فضاپیما در این روش، پارامترهای توصیف‌کننده وضعیت سیستم به‌عنوان خروجی در نظر گرفته می‌شوند. هدف این پژوهش بررسی تفاوت اثر استفاده از روش مرسوم بیان سینماتیک از طریق پارامترهای کواترنیون در مقابل استفاده از پارامترهای اصلاح‌شده رودریگز می‌باشد. با طراحی صورت گرفته و نتایج شبیه‌سازی‌ها این مطلب مشخص شد که استفاده از کواترنیون‌ها در مانورهایی که منجر به صفر شدن قسمت اسکالر پارامترهای کواترنیون می‌شود، عدم کارایی قانون کنترلی رابه علت وجود سینگولاریتی در محاسبات نتیجه خواهد داد. این در حالی است که به کمک پارامترهای اصلاح‌شده رودریگز این مشکل به وجود نمی‌آید و کنترلر در مانورهای تغییر وضعیت یکسان سرعت و بهره‌وری بیشتری را با تلاش کمتر از خود نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation in to The Effect of Kinematic of The Space Craft Attitude Control Using Feedback Linearization Method

نویسندگان [English]

  • mohammad Navabi 1
  • Mohammad Reza Hosseini 2
1 Shahid Beheshti University
2 Shahid Beheshti University
چکیده [English]

Using nonlinear control theories is common for the attitude control problem of spacecraft.Feedback linearization theory is a nonlinear control method which tries to transform nonlinear dynamics of system into linear.In this control theory, outputs choice will have a direct impact on the stability of system.In order to control the spacecraft attitude by this method, parameters that describe the spacecraft attitude are considered as outputs.The aim of this study is to investigate the effect of using quaternion parameters as a conventional representation in the kinematic equations compared with modified Rodrigues parameters.According to designed controller and simulation results, it is evident that in maneuvers with zero scalar part of quaternion, the controller efficiency is reduced due to singularity in the calculations.This is while by using modified Rodrigues parameters, singularity does not occur and in this way the controller, in the same maneuvers as the previous method, is faster and more efficient with less effort.

کلیدواژه‌ها [English]

  • Quaternions
  • Modified Rodrigues parameters
  • Feedback linearization
  • Spacecraft attitude control

[1]   Navabi, M., Tavana, M. and Mirzaei, H., “Attitude Control of Spacecraft by State Dependent Riccati Equation and Power Series Expansion of Riccati Methods Journal of Space Science & Technology, (JSST), Vol. 7, No. 4, 2015, pp. 39-49, (in Persian).

[2]  Slotin, J. J. E., and Li, W., Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, 1991.

[3]  Yue-nong, F. and Qing-hua W., “Tracking Control of Robot Manipulators via Output Feedback Linearization,” Frontiers of Mechanical Engineering  in China, Vol. 1, No. 3, 2006, pp. 329-335.

[4]  Samuel, J. and O.Pedro, J., “Hybrid Feedback Linearization Slip Control for Anti-lock Braking System,” Acta Polytechnica Hungarica, vol. 10, No. 1, 2013, pp.81-99.

[5]  Long, Y., Lyttle, S., Pagano, N. and Cappelleri, D. J., “Design and Quaternion-Based Attitude Control of the Omnicopter MAVU sing Feedback Linearization,”ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Vol. 4,2012, pp. 1413-1421.

[6]  Bang, H., Lee, J. S. and Eun, Y. J., “Nonlinear Attitude Control for a Rigid Spacecraft by Feedback Linearization,”KSME International Journal,(in Persian),Vol. 18, No. 2, 2004, pp. 203-210.

[7]  Kristiansen, R. and Nicklasson, P. J., “Spacecraft Formation Flying: A Review and New Results on State Feedback Control,”Acta Astronautica, Vol. 65, No. 11-12, 2009, pp. 1537-1552.

[8]  Chen, L. Q. and Liu, Y.Z., “Chaotic Attitude Motion of a Magnetic Rigid Spacecraft and its Control,” International Journal of Non-Linear Mechanics, Vol. 37, No. 3, 2002, pp. 493-504.

[9]  Fang, B. and Kelkar, A.G., “On feedback linearization of underactuated nonlinear spacecraft dynamics,” Decision and Control Proceedings of the 40th IEEE Conference, Vol. 4, 2001, pp. 3400-3405.

[10]  Singh, S. N. and Yim, W., “Feedback Linearization and Solar Pressure Satellite Attitude Control,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 2,1996, pp. 732-741.

[11]  Bang, H., Myung, H. S. and Tahk, M.J., “Nonlinear Momentum Transfer Control of Spacecraft by Feedback Linearization,” Journal of Spacecraft and Rockets, Vol. 39, No. 6, 2002, pp. 866-873.

[12]  Bajodah, A. H., “Singularly Perturbed Feedback Linearization with Linear Attitude Deviation Dynamics Realization,” Nonlinear Dynamics, Vol. 53, No. 4, 2008, pp. 321-343.

[13]  Manikonda, V., Arambel, P. O., Gopinathan, M. and Mehra, R.K., “A Model Predictive Control-Based Approach for Spacecraft Formation Keeping and Attitude Control,” American Control ConferenceProceedings of the IEEE, Vol. 6,1999, pp. 4258-4262.

[14]  Chen, J., Jiang, D. L. and Sun, X.,“Adaptive Feedback Linearization Control of a Flexible Spacecraft,” Intelligent Systems Design and Applications Sixth International Conference IEEE, Vol. 2, 2006, pp. 225-230.

[15]  Navabi, M. and Hosseini, M. R., “Modeling and Spacecraft Attitude Control Using Reaction Wheel with Feedback Linearization, its Performance Study Subject to Power and EULERINT,” Modares Mechanical Engineering, Vol. 18, No. 01, 2018, pp. 51-61, (in Persian).

[16]  Kök, I., “Comparison and Analysis of Attitude Control Systems of a Satellite Using Reaction Wheel Actuators,” Master of Science, Luleå University, 2012.

[17]  Bruccoleri, C. and Mortari, D., “MRAD: Modified Rodrigues Vector Attitude Determination,” The Journal of the Astronautical Sciences, Vol. 54, No. 3, 2006, pp. 383-390.

[18]  Navabi, M. and Soleymanpour, S., “Standard and Robust Back stepping Control of a Spacecraft with Inertial Uncertainty,” Modares Mechanical Engineering, Vol. 14, No. 16, 2015, pp. 112-124, (in Persian).

[19]  Navabi, M. and Nasiri, N., “Modeling and Simulating the Earth’s Magnetic Field Utilizing the 10th Generation of IGRF and Comparison the Linear and Nonlinear Transformation in order to Use in Satellite Attitude Control,” Journal of Space Science & Technology, (JSST), Vol. 3, No. 4, 2011, pp. 45-52, (in Persian).

[20]  Sidi, M. J., Spacecraft Dynamics and Control A Practical Engineering Approach, Cambridge University Press, 1997.

[21]  Groÿekatthöfer, K. and Yoon, Z., “Introduction Into Quaternions For Spacecraft Attitude Representation,” TU Berlin,Technical University of Berlin, Berlin, Germany  No. 16, 2012.

[22]  Crassidis, J. L. and Landis Markley, F., “Attitude Estimation Using Modified Rodrigues Parameters,” Flight Mechanics/ Estimation Theory Symposium, (NASA-CP-3333), 1996, pp. 71-83.

[23]  Navabi, M. and Soleymanpour, S., “Command Filtered Modular Adaptive Back stepping Attitude Control of Spacecraft in Presence of Disturbance Torque,” Modares Mechanical Engineering, Vol. 15, No. 07, 2015, pp. 285-296, (in Persian).

[24]  Tsiotras, P., “Stabilization and Optimality Results for the Attitude Control Problem,” Journal of Guidance Control and Dynamics, Vol. 19, No. 4, 1996, pp. 772-779.

[25]  Khalil, H. K., Noninear Systems, Prentice-Hall, New Jersey, 1996.

[26]  Anjali, B. S.,Vivek, A. and Nandagopal, J. L., “Simulation and Analysis of Integral LQR Controller for Inner Control Loop Design of a Fixed Wing Micro Aerial Vehicle (MAV),” Procedia Technology, Vol. 1, No. 25, 2016, pp. 76-83.

[27]  Kirk, D. E., Optimal Control Theory an Introduction, Courier Corporation, New York, 2004.

[28]  Navabi, M., Nasiri,N., “Attitude Control of Microsatellite in Terms of Energy Consumption for Reaction Wheel and Magnetorquer Actuators,” Proceedings of The 10th Conference of Iranian Aerospace Society, Tehran, Iran, March 1-3, 2010, (in persian).