قانون هدایت زمان محدود برای برخورد با زاویه خط دید مطلوب با استفاده از کنترل مد لغزشی نهایی غیرسینگولار

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 دانشگاه صنعتی مالک اشتر- دانشکده برق

چکیده

در این مقاله هدایت مد لغزشی نهایی غیر سینگولار برای برخورد با زاویه خط دید مطلوب در فاز نهایی پیشنهاد شده است. به منظور دستیابی به زاویه خط دید از پیش تعریف شده و برخورد با هدف، یک متغیر لغزش نهایی غیر سینگولار تعریف شده است. در فاز رسیدن در حضور نامعینی­هایی از قبیل مانورهای هدف، هدایت مد لغزشی نهایی غیر سینگولار برای صفر کردن متغیر لغزش در مدت زمان رسیدن محدود طراحی شده است. سپس در فاز لغزش به دلیل تعریف متغیر لغزش به صورت نهایی غیرسینگولار، پایداری زمان محدود خط دید و نرخ چرخش خط دید بدون رخ دادن سینگولاریتی در دستور شتاب به عنوان سیگنال کنترل تضمین می­شود. نتایج شبیه‌سازی عددی برای نشان دادن پتانسیل قانون هدایت پیشنهادی ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Finite Time Guidance Law to Intercept Desired LOS Angle Using NTSM Control

نویسندگان [English]

  • Vahid Behnamgol 1
  • Ahmadreza Vali 1
  • ali mohammadi 2
1 Malek Ashtar University of Technology
2 MalekAshtar University of Technology
چکیده [English]

Nonsingular terminal sliding mode (NTSM) guidance for intercepting the desired line of sight (LOS) angle in terminal phase is proposed in this paper. In order to satisfy the predefined LOS angle and to intercep into target, a nonsingular terminal sliding variable is introduced. In reaching phase, in the presence of uncertainties such as target maneuvers, robust NTSM guidance law is designed in order forzeroing the sliding variable in finite reaching time. Then, in sliding phase, due to introducing nonsingular terminal sliding variable, finite time stability of line of sight angle and line of sight angular rate is granteed without singularity in commanded acceleration as control signal Numerical simulations are presented to illustrate the potential of the proposed guidance law.

کلیدواژه‌ها [English]

  • Guidance law
  • Impact angle
  • NTSM control
  • Parallel navigation

[1]  Zarchan, P., Tactical and Strategic Missile Guidance, AIAA Series, Vol. 199, 2002, pp. 143–152.

[2]  Siouris, G. M., Missile Guidance and Control Systems, Springer, 2005, pp. 194–228.

[3]  Behnamgol, V., Vali, A.R. and Mohammadi, A., “A New Backstepping Sliding Mode Guidance Law Considering Control Loop Dynamics,” Journal of Space Science and Technology (JSST), Vol. 8,  No. 4, Winter 2016, pp. 9-16.

[4]  Behnamgol, V., Vali, A. R. and Mohammadi, A., “A New Observer-Based Chattering-Free Sliding Mode Guidance Law,” ProcIMechE Part G, J. Aerospace Engineering , Vol. 230, No.8, 2016, pp. 1486–1495.

[5]  Zhou, D., Sun, Sh., Zhou, J.Y., Teo, K.L. “A Discrete Sliding-Mode Guidance Law,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 137, 2015, pp. 6

[6]  Liu, L., Zhu, J., Tang, G. and Bao, W. “Diving guidance via feedback linearization and sliding mode control,” Aerospace Science and Technology, Vol. 41, 2015,  pp. 16–23.

[7]  Modirrousta, A., Sohrab, M. and Dehghan, S.M.  “A modified guidance law for ground moving target tracking with a class of the fast adaptive second-order sliding mode,” SAGE Transactions of the Institute of Measurement and Control, 2015, pp.1–13.

[8]  Shtessel, Y. B., Shkolnikov, I. A., and Levant, A., “Smooth second-order sliding modes: Missile guidance application,” Automatica, No. 43, 2007, pp. 1470 – 1476.

[9]  Behnamgol, V., Mohammadzaman, I., Vali, A.R., Ghahramani. N.A., “Guidance Law Design using Finite Time Second Order Sliding Mode Control,” Journal of Control, K.N. Toosi University of  Technology, Vol. 5,  No. 3, 2011, pp. 36-45.

[10]   Harl, N. and Balakrishnan, S. N., “Impact Time and Angle Guidance with Sliding Mode Control,” IEEE Transaction on Control Systems Technology, 2011.

[11]   Ryoo, C., Cho, H., and Tahk, M., “Closed-Form solutions of optimal guidance with terminal impact angle constraint,” in Proc. IEEE Conf. Control Appl., 2003, pp. 504–509.

[12]   Jeong, S., Cho, S., and Kim, E., “Angle constraint biased PNG,” in Proc. 5th Asian Control Conf., 2004, pp. 1849–1854.

[13]   Lu, P., Doman, D., and Schierman, J., “Adaptive terminal guidance for hypervelocity impact in specified direction,” presented at the AIAA Guidance. Navigation. Control Conf. Exhibit, San Francisco, CA, 2005.

[14]  Xu, Q., Yu, J., Yu, J., and Yang, X., “Integrated guidance/autopilot design for missiles with impact angle constraints,” in Proc. IEEE Int. Conf. Inform. Acquisition, 2006, pp. 75–79.

[15]   Ryoo, C., Cho, H., and Tahk, M., “Time-to-Go weighted optimal guidance with impact angle constraints,” IEEE Trans. Control Syst. Technology., Vol. 14, No. 3, May 2006, pp. 483–492.

[16]   Sang, D., Min, B., and Tahk, M., “Impact angle control guidance law using Lyapunov function and PSO method,” in Proc. Annu. SICE Conf., 2007, pp. 2253–2257.

[17]   Ratnoo, A., and Ghose, D., “SDRE based guidance law for impact angle constrained trajectories,” presented at the AIAA Guid., Nav., Control Conf. Exhibit, Hilton Head, 2007.

[18]  Rao, S., and Ghose, D., “Sliding Mode Control based Terminal Impact Angle Constrained Guidance Laws using Dual Sliding Surface”, 12th IEEE Workshop on Variable Structure Systems, January 12-14, Mumbai, 2012.

[19]  Gu, W., Zhang, U., YU, J.,“A three-dimensional Missile Guidance Law with Angle Constraint Based on Sliding Mode Control”, 2007 IEEE International Conference on Control and Automation, Guangzhou, CHINA - May 30 to June 1, 2007.

[20]  Komurcugil, H., “Adaptive terminal sliding-mode control strategy for DC–DC buck converters”, Elsevier ISA Transactions 51, 2012, pp. 673–681.

[21]  Chiu, Ch. S., “Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems”, Elsevier Automatica, 48, 2012, pp. 316–326.

[22]  Zhou, D., and Sun, S., “Guidance Laws with Finite Time Convergence,” Journal of Guidance, Control, and Dynamics, 32, pp. 1838-1846, 2009.

[23]  Janardhanan, S., and Bandyopadhyay, B., "On Discretization of Continuous-TimeTerminal Sliding Mode", IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006, pp. 1532- 1536.

[24]  Kumar, Sh. R., Rao, S., and Ghose, D., “Sliding Mode Guidance and Control for All Aspect interceptors with Terminal Angle Constraints”, Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, july – August 2012.

[25]  Zhang, U., Sun, M., Chen, Z., “Finite-time convergent guidance law with impact angle constraint based on sliding-mode control”, Springer, Nonlinear Dynamics, Published online 07 June 2012.

[26]  Behnamgol, V., Vali, A. R., Mohammadi, A., "Designing Guidance Law For Intercepting With Limited Angle Using Terminal Sliding Mode Control," 13th Conference of Iranian Aerospace Society, Tehran, IRAN, 23-25 February 2014.

[27]  Feng, Y., Yub, X., Han, F., “On nonsingular terminal sliding-mode control of nonlinear systems”, Elsevier Automatica 49, 2013, pp. 1715–1722.

[28]  Li, K., Cao, J., and Yu, F., “Study on the Nonsingular Problem of Fractional-Order Terminal Sliding Mode Control”, Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2013.

[29]  Kumar, Sh. R., Rao, S., and Ghose, D., “Non-singular Terminal Sliding Mode Guidance and Control with Terminal Angle Constraints for Non-maneuvering Targets”, 12th IEEE Workshop on Variable Structure Systems, January 12-14, Mumbai, 2012.

[30]  Khalil, H. K., Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ, 1996, pp. 601-617.

[31]  Slotine, J. J. E., and Li, W., Applied Nonlinear Control, Prentice-Hall, Upper Saddle River, NJ, 1991, pp. 276-309.

[32]  Fridman, L., Moreno, J., and Iriarte, R., Sliding Modes after the First Decade of the 21st Century, Springer, 2011.

[33]  Feng, Y., Yu, X., Man, Zh., “Non-singular terminal sliding mode control of rigid manipulators”, Elsevier, Automatica 38, 2002, pp. 2159 – 2167.

[34]  Sun, Sh., Zhou, D., Hou, W., “A guidance law with finite time convergence accounting for autopilot lag”, Elsevier, Aerospace Science and Technology 25, 2013, pp. 132–137.