هدایت مد لغزشی با سوییچنگ سطح برای فاز نهایی ملاقات مداری در مدار نزدیک به دایره

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشکده مکانیک تربیت مدرس

چکیده

هدف از مقاله حاضر ارایه یک الگوریتم هدایت ملاقات مداری سریع، مقاوم و ایمن است. طرح حاضر نرخ همگرایی به نقطه تعادل را تا زمان رسیدن فضاپیمای تعقیب کننده به همسایگی هدف بهبود می­بخشد. سپس، ساختار هدایت مد لغزشی مقاوم طوری تغییر می­کند که از تکینگی در زمان رسیدن به هدف جلوگیری کند و یک ملاقات مداری ایمن انجام پذیرد. این تغییرات در ساختار هدایت توسط یک تابع سوییچینگ صورت می­پذیرد. علاوه بر این، یک تابع اشباع اصلاح شده در ساختار هدایت در بخش گسسته مد لغزشی به کار رفته است. با استفاده از تابع لیاپانوف همگرایی مجانبی تضمین شده­است. شبیه‌سازی­های عددی برای هر دو مدل خطی و غیرخطی حرکت نسبی صورت گرفته است. آنومالی میانگین، سرعت زاویه­ای و خروج از مرکزیت نیز به عنوان عدم قطعیت­های مساله در نظر گرفته شده­اند. در نهایت، نتایج شبیه‌سازی­های عددی کارایی و قوام الگوریتم هدایت پیشنهادی در حضور اغتشاشات، عدم قطعیت‌ها و غیرخطی­گری را در مقایسه با مد لغزشی متداول نشان می­ دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Robust Switching Surfaces Sliding Mode Guidance for Terminal Rendezvous in Near Circular Orbit

نویسندگان [English]

  • seyed aliakbar kasaeian 1
  • Masoud Ebrahimi 2
1 mechanical engineering department, tarbiat modares university,tehran, iran
2 Tarbiat Modares university,Tehran, Iran
چکیده [English]

The present study aims to present a safe, robust and fast orbital rendezvous guidance. The scheme improves the rate of convergence to equal point until the chaser spacecraft reaches the proximity target. Then, the robust guidance structure is transformed in order to avoid singularity and provide safe rendezvous for reaching the target. Switching is conducted in the guidance scheme by utilizing a self-defined sign function. Moreover, a new modified saturation function is employed instead of the discontinuous part of the sliding mode. The Lyapunov function approach guarantees the asymptotic stability. Numerical simulations are conducted by both linear and nonlinear models of relative dynamics. Mean anomaly, angular velocity, and eccentricity of target orbit are considered as the uncertainties. Finally, the results indicate the performance and robustness of the proposed guidance in the presence of non-linearity, uncertainties, and disturbances, compared to the conventional sliding mode.

کلیدواژه‌ها [English]

  • Rendezvous
  • Terminal sliding mode
  • Singularity
  • Lyapunov function
  • Rate of convergence
[1] Feshe, W., Automated Rendezvous and Docking of Spacecraft,Cambridge University Press, 2003.

[2] Lee, D., Guidance, Navigation And Control Systems for Autonomous Proximity Operations and Docking of Spacecraft, Dissertation for the degree of Doctor of Philosophy in aerospace engineering, Missouri University of Science and technology, 2009.

[3] Yazhong, L., Jin, Zh. and Guojin, T., “Survey of orbital dynamics and control of space rendezvous,” Chinese Journal of Aeronautics, Vol. 27, 2014, pp. 1-11.

[4] Aldrin, J. E., Line-of-Sight Guidance Techniques for Manned Orbital Rendezvous, Dissertation for doctor of science, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 1963.

[5] Zhang, G. and Zhou, D., “An improved two-maneuver method for orbit rendezvous with constant thrust,” Proc. IMECHE, Part G: J. Aerospace Engineering, Vol. 226, 2012, pp. 1583-1592.

[6] Kasaeian, S. A., Assadian, N. and Ebrahimi, M., “Sliding mode predictive guidance for terminal rendezvous in eccentric orbits,” ELSEVIER, Acta Astronautica, Vol. 140, 2017, pp. 142-155.

[7] Wiesel, W. E. Space flight Dynamics, McGraw-Hill. Inc., 1989.

[8] Guglieri, G., Maroglio, F., Pellegrino, P. and Torre, L., “Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation,” Elsevier, Acta Astronautica, Vol. 94, 2014, pp. 395-408.

[9] Wu, S., Zhou, W. Y., Tan, S. J. and Wu, G. Q., “Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target,” Hindawi Publication Corporation, The Scientific World Journal, 2013, doi:10.1155/2013/579703.

[10] Yongqiang, Q, Yingmin, J. and Jian, W., “Robust control for constant thrust rendezvous under thrust failure,” Chinese Journal of Aeronautics, Vol. 28, 2015, pp. 518-526.

[11] Chiou, J.C., Hwang, M.C., Wuf, S.D. and Yang, J.Y., “Robust attitude control of spacecraft using sliding mode control and productive network,” International Journal of Systems Science, Vol. 28, 1997, pp. 435-446.

[12] Stott, JR. J.E., Classical and Higher-Order Sliding Mode Attitude Control for Launch Vehicle Systems, Dissertation for the degree of Doctor of Philosophy in the department electrical and computer engineering, The university of Alabama in Huntsville, 2009.

[13] Alikhani, A. and Kasaeian, S.A., “Dynamic Terminal Sliding Mode Control for an Aerospace Launch Vehicle,” Journal of Space science and technology (JSST), Vol. 8, Winter 2016, pp. 1-7.

[14] Tournes, C. and Shtessel, Y., “Automatic Docking Using Second Order Sliding Mode Control0,” Proceeding of the  American Control Conference,New York City, 2007.

[15] Lian, Y. and Tang, G., “Libration point orbit rendezvous using PWPF modulated terminal sliding mode control,” ELSEVIER, Advances in Space Research, Vol. 52, 2013, pp. 2156-2167.

[16] Binglong, Ch. and Yunhai, G., “Super twisting controller for on-orbit servicing to non-cooperative target,” Chinese Journal of Aeronautics, Vol. 28, 2015, pp. 285-293.

[17] Vallado, D. A., Fundamentals of Astrodynamics and Applications, The McGraw-Hill Companies, Inc., College Custom Series, 1997.

[18] Tewari, A., Atmospheric and Space Flight Dynamics, Birkhauser, 2007.

[19] Wei, L., Yunhai, G., Xueqin, C. and Fan Z., “Relative Position and Attitude Coupled Control for Autonomous Docking with a Tumbling Target,” International Journal of Control and Automation, Vol. 4., No. 4, 2011.

[20] Wang, Y., Feng, Y. and Yu, X., “High-order Nonsingular Terminal Sliding Mode Control of Uncertain Multivariable Systems,” The 33rd Annual Conference of the IEEE Electronics Society (IECON), Taipei, Taiwan, 2007.

[21] Romdhane, N.M.B. and Damak, T., “Terminal sliding mode feedback linearization control,” International Journal of Sciences and Techniques of Automatic Control & Computer Engineering, Vol. 4, 2010, pp. 1174-1178.

[22] Liu, K., Liu, F., Wang, S. and Li, Y., “Finite-Time Spacecraft's Soft Landing on Asteroids Using PD and Nonsingular Terminal Sliding Mode Control,” Hindawi Publication Corporation, Mathematical Problems in Engineering, 2015.

[23] Harl, N. and Balakrishnan, S.N., “Reentry Terminal Guidance Through Sliding Mode Control,” Journal of Guidance, Control, and Dynamics,Vol. 33, 2010, pp. 186-199.