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The present study aims to present a safe, robust and fast orbital rendezvous guidance. 
The scheme improves the rate of convergence to equal point until the chaser spacecraft 
reaches the proximity target. Then, the robust guidance structure is transformed in order 
to avoid singularity and provide safe rendezvous for reaching the target. Switching is 
conducted in the guidance scheme by utilizing a self-defined sign function. Moreover, a 
new modified saturation function is employed instead of the discontinuous part of the 
sliding mode. The Lyapunov function approach guarantees the asymptotic stability. 
Numerical simulations are conducted by both linear and nonlinear models of relative 
dynamics. Mean anomaly, angular velocity, and eccentricity of target orbit are 
considered as the uncertainties. Finally, the results indicate the performance and 
robustness of the proposed guidance in the presence of non-linearity, uncertainties, and 
disturbances, compared to the conventional sliding mode. 
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Nomenclature12 ݊  mean motion or constant angular velocity for 
circular target orbits ܽ  semi-major axis of orbitߤ gravitational parameter of the Earth ݎ଴  radius of nominal circular orbit σሶ   Velocity errors 

σ position errors ߝ boundary layer width 

Introduction 

Autonomous rendezvous and docking are important 
parts of some space missions such as assembly of 
space stations, payload transportation to a space 
station, and on-orbit servicing of satellites. Generally, 
rendezvous is one of the key operational technologies 
for missions that involve more than one spacecraft. 
Although, the first rendezvous and docking between 
two spacecraft were done at NASA’s Gemini mission, 
the Soviet space vehicles, Cosmos 186 and 188, did 

                                                           
1. PhD Student 
2. Assistant Professor (Corresponding Author) 

the first automatic rendezvous and docking. Also, 
Chinese Shenzou-8 and Shenzou-9 spacecraft 
performed rendezvous and docking with Tiangong-1 
space lab successfully [1-3]. One of the first 
investigations on the rendezvous guidance was 
accomplished by Aldrin on NASA’s Gemini 
rendezvous mission[4]. Terminal rendezvous is a 
special part of orbital rendezvous, where relative 
information is available and the relative distance is 
small in comparison with the target orbit radius [5,6]. 
Maneuvers such as Hohmann transfer is not 
appropriate in about few meters to space station. Due 
to some reasons like uncertainties and disturbances, 
even the best executed series of orbital maneuvers 
might not exactly achieve the appropriate final orbit 
[7]. Furthermore, the sequence of operations would be 
relatively rapid when chaser approaches the target. 
Thus, with regard to availability and accuracy of 
relative data, the close-loop guidance and control are 
necessary for the terminal rendezvous [1]. 

   In the recent years, the guidance and control of 
rendezvous missions has attracted many researchers.  
state dependent Riccati equation (SDRE) was utilized to 
control the chaser translational relative motion. Attitude 
control of the chaser vehicle was achieved by a linear 
quadratic regulator (LQR) controller. Moreover, a 
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linear quadratic Gaussian (LQG)-type control system 
was proposed by combining the controller with 
extended Kalman filter [2]. An optimal guidance was 
introduced for far range rendezvous. Two maneuvers 
are needed to perform the rendezvous; but due to the 
open-loop control in the second maneuver, terminal 
errors can become large. This method is usable for 
any elliptical orbital rendezvous under constant thrust 
[5]. Moreover, a GNC system design of a ground 
test-bed for spacecraft rendezvous and docking 
experiments was introduced. In order to command 
the cold gas thrusters and track a mission trajectory 
profile, the PID control was utilized with Pulse 
Width Modulators for the chaser [8]. 

   The Lyapunov-based methods are noteworthy for 
terminal rendezvous because of their robustness and 
existence of stability proof. A Lyapunov-based robust 
H∞ controller was designed for the non-cooperative 
target in circular orbit by assuming the control saturation 
and uncertainties [9]. A Lyapunov function subject to 
convex optimization to design a robust control was 
introduced for spacecraft rendezvous [10].  

   The sliding mode algorithm as a Lyapunov-
based method can guarantee the global asymptotic 
stability. The sliding mode theory has been studied 
for many decades as one of the most active areas of 
research on nonlinear systems theory. The sliding 
mode is insensitive to and robust against 
uncertainties and external disturbances. This robust 
method is characterized by the choice of a sliding 
manifold in a way that the desired treatment can be 
achieved by defining the control law. Hence, system 
states are forced to reach the manifold and remain on 
it [11-13].  

   A super-twisting algorithm as a second 
order sliding mode scheme was designed by 
contributing nonlinear relative equations and 
attitude dynamics for spacecraft rendezvous [14]. 
Also, a terminal sliding mode was designed for 
rendezvous mission. The terminal rendezvous was 
assumed to be in libration point between the Moon 
and the Earth [15]. Binglong and Yunhai proposed 
a super-twisting controller to rendezvous and 
docking between two spacecraft [16]. A sliding 
mode guidance scheme was proposed for 
spacecraft rendezvous in eccentric orbits with 
predicting desired states in each time step [6].  

   The main contribution of this paper is the 
design of a new switching surface sliding mode 
guidance for terminal rendezvous of two spacecraft. 
The target is taken to be in a circular or near circular 
orbit. The guidance algorithm is designed in a way 
that chattering can be attenuated more with a higher 
convergence rate that satisfies the terminal 
rendezvous constraints. The proposed guidance is 
based on Lyapunov stability concepts. Though the 
commands are computed by linearized Hill’s 

equations, the relative motion simulation is based on 
both linearized and nonlinear original equations. 

   This paper is presented as follows: Section 2 is 
dedicated to present dynamics equations of relative 
motion. The proposed switching surface sliding mode 
is introduced in section 3. Section 4 establishes the 
guidance scheme based on the proposed sliding mode 
scheme for the terminal rendezvous phase. The 
simulations results are presented in section 5. Finally, 
concluding remarks are given in section 6. 

Model Formulation 

The relative motion equations between two 
spacecraft are important for the closed-loop 
guidance of terminal rendezvous. These equations 
are expressed in many astrodynamics texts by 
approximated linearized equations called Clohessy-
Wiltshire equations. These are given with near 
circular orbit assumption for target spacecraft. The 
equations are also called Hill’s equations. Although 
these equations are invalid when the distance 
betweentwo spacecraft is moderately large 
[3,17,18], the guidance scheme would be designed 
for the terminal phase of rendezvous; hence, the 
equations are applicable and useful. The nonlinear 
relative equations could be derived by substituting 
the relative kinematics into the Newton’s first law 
and using two bodies gravitational force equation. 
The relative equations are based on the Cartesian 
coordinate shown in Fig. 1. The center of coordinate 
is located at the center of the target spacecraft and 
z-axis is aligned with the angular momentums 
direction. The x-axis is in the direction of the 
position vector from the Earth center to the target 
spacecraft and y-axis is in a way that the right-
handed system of coordinate is completed. 
 
 
 
 
 
 

 

 

 

 

 

Fig. 1. Coordinate system considered for relative dynamics  

The nonlinear equations of motion in absence of 
disturbances and uncertainties could be presented as 
follows [19]: 

Target 

Chaser 

Earth 

߱ 

z 
r 

x 
y 



Journal of Space Science and  Technology
Vol. 11 / No. 2/ Summer 2018 / 23 

   
 
 
Robust Switching Surfaces Sliding Mode Guidance … ݔሷ − 2nyሶ − nሶ y − nଶݔ ߤ= ቆ ଵ௥೟మ − (௥೟ା௫)[(௥೟ା௫)మା௬మା௭మ]యమቇ + ௫݂  

(1) 

ሷݕ + 2nxሶ + nሶ x − nଶݕ =− ఓ௬[(௥೟ା௫)మା௬మା௭మ]యమ + ௬݂  

ሷݖ  = − ఓ௭[(௥೟ା௫)మା௬మା௭మ]యమ + ௭݂  

 
where݊ = ඥߤ/ܽଷ denotes mean motion or 

constant angular velocity for circular target orbits, ܽ 
shows the semi-major axis of orbit, and ߤ=GM is the 
gravitational parameter of the Earth. The x, y, z 
represent the relative position in the Cartesian 
coordinate. The term ௜݂ୀ௫,௬,௭ refers to the control and 
perturbing forces per unit of mass in each direction. 
The linearized equations, so-called the Hill’s 
equations, are [9,17]: 

ሷݔ  − 2nyሶ − 3nଶݔ = ௫݂  ݕሷ + 2nxሶ = ௬݂  ݖሷ + nଶݖ = ௭݂  

(2) 

There are some errors in determining the orbit 
due to measurement errors and perturbations. So, the 
magnitude of semi-major axis of near circular orbit 
and even nominal circular orbit is not exactly known. 
So, the uncertainty can be considered in both mean 
motion and mean anomaly. The uncertainty in the 
mean motion of the near circular orbit is considered as 
[9]: ݊ = ݊଴൫1 +  ൯  (3)(ݐ)߮

where ݊଴ = ඥݎ/ߤ଴ଷ , and  ݎ଴ denotes the radius of 
nominal circular orbit and ߮(ݐ) expresses the 
uncertainty as a coefficient of nominal value. 
Obviously, the uncertainties are bounded and 
relatively small. In this paper, numerical simulations 
are performed with the uncertainties due to near-
circularity of the target orbit by accounting the 
uncertainty in eccentricity, mean motion, and mean 
anomaly. 

Nonsingular Sliding Mode with Switching 
Surfaces 

In the rendezvous mission, the relative distances 
should have no overshoot, and the relative velocity 
should be sufficiently low or zero. The conventional 
first-order sliding mode might ensure the relative 
distance convergence to zero, but not the convergence 
of its derivatives. In addition, the overshoot problem 
can occur in this control method. Appropriate changes 
to the rate of convergence near the target solve this 
problem. In the sufficient vicinity of the target, the 

sliding surface switches to obtain the infinite time 
convergence. This type of convergence could prepare a 
safe rendezvous condition and get close enough to 
target in an acceptable time.  

   In the conventional terminal sliding mode 
(TSM), the nonlinear sliding surface could fasten the 
convergence rate. In the first part of this section, TSM 
is explained. Then, the proposed scheme is introduced 
to be used for orbital rendezvous guidance. 

a) Terminal sliding mode (TSM) 

The sliding mode design consists of two major 
steps. One is the selection of sliding surface; the other 
is the design of control law which ensures the stability. 
Because of the special nonlinear surface of TSM, the 
time of state convergence or rendezvous time could be 
adjusted [15]. The TSM design is based on a particular 
choice of the sliding surface and a suitable 
determination of a control law. The control law forces 
the states to remain on the surface. When the states 
slide on the surface, TSM is established and a fast 
finite convergence is guaranteed. This equation defines 
a TSM nonlinear surface: ܵ = σሶ +  σ೜೛  (4)ߚ

where β>0, p and q are positive odd integers 
verifying p>q, and 0.5<q/p<1 [20, 21].  The velocity 
and position errors are denoted by σሶ and σ, 
respectively. To prove the stability with Lyapunov 
direct method, Lyapunov stability conditions ought to 
be met. Lyapunov function candidate is chosen as V = ଵଶ ܵଶ. For asymptotical stability, Lyapunov 

function derivative must be a negative definite (i.e., 
just when S is zero, this derivative could be zero). This 
condition is satisfied when: Vሶ = SSሶ = S ൬σሷ + β

୯୮ σ೜೛ିଵσሶ ൰ ≤ 0  (5) 

The difference in TSM method with the conventional 
sliding mode method would lead to afast response. The 
sliding manifold is made nonlinear by using states in 

power. Because of the existence of 
௤௣ σ೜೛ିଵ

 in sliding 

manifold derivative (as seen in Eq. (5)), the rate of 
error elimination is higher than the conventional 
sliding mode in the vicinity of zero point (equal point) 
[13]. Also, the finite time convergence is accessable by 
TSM, while the convergence to the equal point is 
reached in infinite time by the conventional sliding 
mode.The negative power appears at derivative of 
sliding surface. When σ converges to zero, by turning 
it up in denominator, singularity at the equal point is 
evident. In addition, in a close vicinity of equal point 
in the phase plane, the real actuator is saturated and 
could not satisfy the expected value. 

b) Non-singular switching surface sliding mode control 

Although terminal sliding mode control in 
classical form directs towards singularity, the problem 



Journal of Space Science and  Technology
Vol. 11 / No. 2/ Summer 2018 / 25 

   
 
 
Robust Switching Surfaces Sliding Mode Guidance … 

whereߩ is the positive constant. Since this input 
would include a sign function, chattering effect 
appears. The function is replaced by saturation 
function. In order to satisfy the Lyapunov condition (if 
saturation function is to be used), the following term 
ought to be obtained in the proposed sliding scheme: ሶܸ = ݐܽݏܵߩ− ቀௌఌቁ < 0  (15) 

whereߝ represents boundary layer width and saturation 
function is as:  (ݔ)ݐܽݏ = ൜1         |ݔ| ≥ |ݔ|ݔ1 < 1   (16) 

The saturation function could eliminate the 
chattering, yet, no stability could be proved inside a 
boundary layer around the sliding surface. Of course, it 
could be proved that the states converge to the 
boundary layer about ܵ = 0, and stay around the 
surface once they reach the boundary. However, it is a 
compromise between the error in the sliding surface 
and the chattering elimination [23]. 

   TSM idea led to a new approach in the 
discontinuous part of the input that 

appeared in Eq. (14). If, instead of ܵ in saturation 
function, ܵ in the power of p/q is used, the saturation 
function becomes greater than before in the boundary 
layer. Therefore, more negative Lyapunov function 
derivative is gained [13]. This concept could be seen in 
Fig. 2 for (ܵ଴.଺) as modified saturation function (M. 
Sat). It means that the discontinuous part modification 
is more robust against disturbances and uncertainties; 
furthermore, the sliding scheme is more sensitive to 
going states off the surface. 

 
Fig. 2. The common saturation function in comparison with 

the modified one (sat (ܵ 0.6)) 

The commands are derived based on establishing 
the following equation:   ሶܸ = ݐܽݏܵߩ− ቆௌ౧౦ఌ ቇ < 0  (17) 

This new method for chattering elimination has 
privilege in comparison with the tanh (hyperbolic 
tangent). Because tanh could not reach the upper and 
lower bounds in finite time, while this method is 
treated as tanh and reaches the boundary as a simple 
saturation function. So, the rate of convergence to the 
maximum of discontinuous control is increased in the 
boundary layer of the sliding surface and commands 
remain continuous. Based on Eq. (16) the input is 
given in the next section. 

Rendezvous Guidance Via Nonsingular 
Terminal Sliding Mode 

A robust sliding mode guidance algorithm based on 
the proposed sliding surface and the modified 
saturation function is established in this section. The 

guidance scheme creates acceleration commands in 
three dimensions for translational dynamics. The state 
error is considered to be relative position that must be 
tending to zero without collision. The sliding surface 
vector is determined like Eq. (10) for three 
dimensions: 

௜ܵ(ߪ௜, (௜ݑ = పሶߪ (ݐ) + ೜೛ௌி൫ఙ೔(௧),௨೔(௧),௎೟೓ೝ೔൯(ݐ)௜ߪ௜ܭ
  (18) 

Where ܭ௜ୀଵ,ଶ,ଷ = ,௫ܭ ,௬ܭ  ௭ is considered to beܭ
the same for all directions (ܭ), and ߪ௜ୀଵ,ଶ,ଷ = ,ݔ ,ݕ  .ݖ
The sliding surface is denoted by ௜ܵୀଵ,ଶ,ଷ = ܵ௫, ܵ௬, ܵ௭ 

The Lyapunov candidate ܸ = ଵଶ ்ܵܵ should satisfy Eq. 

(16), where ࡿ = ൣܵ௫ܵ௬ܵ௭൧்
. Eq. (17) is substituted in 

Eq. (16) as follows: 
 ሶܸ = ሶࡿࢀࡿ =∑ ௜ܵ ቆߪపሷ +ଷ௜ୀଵߪܭపሶ ቆ௤௣ ,௜ߪ൫ܨܵ ,௜ݑ ௧ܷ௛௥௜൯ቇ ௜ߪ ೜೛ௌி൫ఙ೔,௨೔,௎೟೓ೝ೔൯ିଵቇ  

(19) 

Substituting ߪపሷ  from Eq. (2) for linearized relative 
motion into Eq. (18) yields the following equations: ሶܸ = ܵ௫ܵ௫ሶ + ܵ௬ܵ௬ሶ + ܵ௭ܵ௭ሶ = ܵ௫ ቆ ௫݂ + ሶݕ2݊ +3݊ଶݔ ሶݔܭ+ ቆ௤௣ ,ݔ൫ܨܵ ,௫ݑ ௧ܷ௛௥௫൯ቇ   ೜೛ௌி൫௫,௨ೣ,௎೟೓ೝೣ൯ିଵቇݔ

+ܵ௬ ቆ ௬݂ − ሶݔ2݊ ሶݕܭ+ ቆ௤௣ ܨܵ ቀݕ, ,௬ݑ ௧ܷ௛௥௬ቁቇ   ೜೛ௌிቀ௬,௨೤,௎೟೓ೝ೤ቁିଵቇݕ

+ܵ௭ ቆ ௭݂ − ݊ଶݖ ሶݖܭ+ ቆ௤௣ ,ݖ൫ܨܵ ,௭ݑ ௧ܷ௛௥௭൯ቇ   ೜೛ௌி൫௭,௨೥,௎೟೓ೝ೥൯ିଵቇݖ

(20) 

The ௜݂ୀଵ,ଶ,ଷ = ௫݂, ௬݂, ௭݂ are the guidance 
acceleration commands. Note that the sliding surface 
function is piecewise derivable for each amount of 
SF.To satisfy the Lyapunov condition, an input ought 
to be given that makes the Lyapunov function 
derivation negative and satisfy Eq. (16). Hence, the 
derivation should be as follows: 
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ሶܸ = ∑ ߩ−] ௜ܵݐܽݏ ቌௌ೔౧౦షభఌ೔ ቍ]ଷ௜ୀଵ    , ݅ = 1,2,3  (21) 

The commands of each direction in Eq. (19) are 
proposed in ways that satisfy Eq. (20). The commands 
can be given as: ݑ௫ = ሶݕ2݊− − 3݊ଶݔ − ሶݔܭ ቆ௤௣ ,ݔ൫ܨܵ ,௫ݑ ௧ܷ௛௥௫൯ቇ  

೜೛ௌி൫௫,௨ೣ,௎೟೓ೝೣ൯ିଵݔ   − ݐܽݏߩ ቌௌ౧ೣ౦ఌೣቍ  

௬ݑ = ሶݔ2݊ − ሶݕܭ ቆ௤௣ ܨܵ ቀݕ, ,௬ݑ ௧ܷ௛௥௬ቁቇ  

೜೛ௌிቀ௬,௨೤,௎೟೓ೝ೤ቁିଵݕ             − ݐܽݏߩ ቌௌ೤౧౦ఌ೤ቍ  

௭ݑ = ݊ଶݖ − ሶݖܭ ቆ௤௣ ,ݖ൫ܨܵ ,௭ݑ ௧ܷ௛௥௭൯ቇ  

೜೛ௌி൫௭,௨೥,௎೟೓ೝ೥൯ିଵݖ           − ݐܽݏߩ ൭ௌ೥౧౦ఌ೥ ൱  

(22) 

As for algebraic problems, ݑ௜ is replaced with the 
previous step command (ݑ௜௢௟ௗ) for the switching 
function. The boundary layers value (ߝ) depends on the 
magnitude of the disturbances and uncertainties. The 
q/p must be determined with regards to the mission 
and acceptable commands region. Its selection 
depends on the desired rate of convergence and 
subsequently the desired time of rendezvous. In spite 
of the presence of the disturbances and uncertainties, 
the given commands guide the spacecraft to a safe 
rendezvous. 

Simulation 

Numerical simulations are performed for two cases to 
demonstrate the performance of the proposed guidance 
using MATLAB software (Mfile& Simulink). The first 
case deals with linear equations with uncertainties. The 
second case makes use of nonlinear equations to 
modeling dynamics. In this case, the non-linearity and 
uncertainty are exerted to analyze the robustness of the 
proposed scheme. Also, the target is assumed to be in a 
near circular orbit at 400 km above the Earth surface. 

a) Case1: linear model with uncertainties and 
disturbance 

The rendezvous is performed by three different 
sliding mode guidance schemes. These schemes are: 
The proposed sliding mode that is introduced by Eq. 
(21), the proposed scheme with common saturation 
function, and the conventional sliding mode guidance 
with the proposed saturation function. The 
conventional sliding surface is as: ௜ܵ = పሶߪ + ,   ௜ߪܭ ௜ୀଵ,ଶ,ଷߪ = ,ݔ ,ݕ ,ݖ ௜ܵୀଵ,ଶ,ଷ = (23) 

ܵ௫, ܵ௬, ܵ௭  
where the guidance parameters are selected with 

trial and error as ܭ = ߩ = 1, ௤௣ = 0.6, ௧ܷ௛௥ೣ ,೤,೥ = ௫ߝ,0.5 = ௬ߝ = 11.1, ௭ߝ = 0.5 in all guidance laws. The 
uncertainties are exerted as: 1% in the mean motion, 
2% in the mean anomaly, and eccentricity is perturbed 
by 0.001. The commands are depicted in Fig. 3, where 
conventional sliding mode (CSM) and the proposed 
sliding mode (PSM2) guidance have the new 
saturation function and PSM1 denotes the proposed 
control with the common saturation function. 
Therefore, the effect of the proposed saturation 
function could be estimated. 

 

 

Fig. 3. The guidance commands (case1) 

The relative positions and velocities are depicted 
in Fig. 4 and 5. It could be clearly seen that the states 
converge to zero in the suitable time. The safe 
rendezvous is the result of infinite time convergence at 
the end of the flight. It seems that the entrance to the 
boundary layer and reduction inthe gain in the 
saturation function caused a bump after steady states in 
the guidance commands. Due to a lower rate of 
convergence of the proposed sliding guidance at the 
end of the flight, it could be safer than a conventional 
one; e.g.  one could consider the relative velocity in Z 
direction. The speed is decreased from 0.1 to 0.01 in 
about 2.3 seconds for PSM2, and in 6.2 seconds for 
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CSM.To show a faster convergence of the proposed 
sliding mode, the data are given at Table 1 after 70 
seconds of simulation. Although the relative position 
becomes negative, the negligible relative velocity and 
smooth approach can perform rendezvous 
sufficiently. 

 

Table 1. Minimum relative distances and velocities at each 
dimension after 70 seconds 

Guidan
ce law 

  (࢓)  ࢔࢏࢓ࢄ

  ࢔࢏࢓ࢅ

(m) 

  (࢓)  ࢔࢏࢓ࢆ

࢙࢓)  ࢔࢏࢓ࢄࢂ )  

࢙࢓)  ࢔࢏࢓࢟ࢂ )  

࢙࢓)  ࢔࢏࢓ࢠࢂ )  

PSM2 −0.96 1.40 0.01 -0.018 0.029 -0.0003 

PSM1 −0.99 1.42 0.01 -0.018 0.029 -0.0004 

CSM 283.6 64.75 17.49 -11.11 -11.05 -0.50 

 

 

 

 

Fig. 4. The relative positions (case1) 

 

Fig. 5. The relative velocities (case 1)  

The singular terminal sliding mode (STSM) that 
was introduced before as Eq. (6) is performed to show 
the singularity problem. The command for x direction 
is depicted in Fig. 6. Although the states converge 
faster than the SF sliding mode, the input becomes 
singular near zero. 

 

 

Fig. 6. The singularity in the terminal sliding without 
switching function 
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To compare the fuel consumption due to these 
commands, the ΔVs are represented in Table 2. In this 
guidance law, a compromise between fuel consumption 
and the rate of convergence has occurred. Although 
PSMs have a fast convergence and converge more 
quickly than CSM, they have greater ΔVs. This rate of 
convergence during flight can be adjusted by q/p 
parameter in the switching function. If this parameter is 
chosen as unity, the guidance becomes CSM. The new 
discontinuous control (or the new saturation function) 
helps decreasing ΔV as seen in the given values of ΔVs 
in Table 2. 

Table 2. ΔVsfor terminal rendezvous (case 1) 

Guidance 
law 

࢙࢓)࢞ࢂࢤ ࢙࢓)࢟ࢂࢤ  ( ࢙࢓)ࢠࢂࢤ  ( ࢙࢓)ࢀࢂࢤ  ( ) 

PSM2 151.8 113.4 7.94 272.69

PSM1 163.3 123.0 7.94 294.24

CSM 73.6 53.7 3.00 130.3 

 In this case, there are several uncertainties; 
therefore, the use of Monte Carlo simulation might be 
expected. Monte Carlo simulations are performed for 
a better demonstration of the performance under 
perturbation. The eccentricity is supposed to vary 
between -0.04 and 0.04. Also, Mean anomaly (M) 
and mean motion (n) change randomly between ±6%and ±5%, respectively. The mean values of 
random errors are zero with standard uniform 
distributions. The magnitudes of minimum distances 
and minimum velocities at each simulation are 
represented in Fig. 7. The 200 simulations results 
show that the proposed methods yield better 
minimum distances and velocities than the 
conventional sliding mode. The minimum relative 
distances magnitude is constricted to lower than 10m 
for the proposed designs; while it rises to near 20m at 
the conventional sliding mode. The mean values of 
relative distances are 7.057m, 3.323m and 3.332m for 
CSM, PSM1 and PSM2, respectively; also, the 
standard deviations of these minimums are 4.511, 
2.287 and 2.289. The mean values of relative 
velocities are 0.135m/s, 0.120m/s and 0.121 m/s for 
CSM, PSM1 and PSM2, respectively. The relative 
velocities minimum standard deviations are also 
0.088, 0.080 and 0.080. These simulations are carried 
out to show robustness without accounting for the 
convergence rates. If the simulation time is 
considered less than 80 seconds, the convergence to 
zero might not be achieved in the conventional 
sliding mode. PSM1 and PSM2 guidance are nearly 
the same because the new saturation function just 
shows itself at the boundary layer and has not major 
effects on the minimum relative distances and 
velocities. 

 

Fig. 7. Monte Carlo simulation results for threen 
controllers 

b) Case 2: Nonlinear model by uncertainty and 
disturbance 

In this part, though Eq. (1) is used as a relative motion 
equation and the guidance schemes are the same. Now, the 
dynamics is more accurate and the robustness could be 
examined due to non-linearity. The designed scheme also 
deals with the disturbances in three dimensions and 
uncertainty. Disturbances can be taken as acceleration 
turned up by gravitational field variation, gravity of third 
body, accelerometers noises, and the like. These 
disturbances are considered to be as 1-cosine in x and y 
directions. To exert disturbance on z direction, a sharp edge 
disturbance is employed. The disturbances in three 
directions are shown in Fig. 8. Also, the mean motion (n) is 
to be with 2% uncertainty. In the previous part, all sliding 
mode coefficients were the same for all methods. To find 
out the effect of the proposed nonlinear surface on the fuel 
consumption with the same convergence time with regard 
to the common surface, the coefficients of CSM are 
changed. These changes are asܭ = 0.15and ߩ = 5. The 
new scheme can reach faster due to increase in the rate of 
convergence by utilizing a greater ߩ. These coefficents are 
obtained by trial and error in order to compare the fuel 
consumptions when both schemes reach the target at 
approximately same duration of time. The coefficients of 
proposed schemes areܭ = 1and ߩ = 2.5. Numerical 
simulation is executed with the previous case initial 
position and ࢂ૙ = [−5, −3, −2]். The commands are 
demonstrated in Fig. 9 for three schemes. The relative 
positions and velocities are shown in Fig. 10, and Fig. 11. 
The flight trajectory during rendezvous is illustrated for the 
proposed method in Fig. 12. 
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Fig. 8. Disturbances in three dimensions  

 
 

 
 

 

Fig. 9. The guidance commands (case 2) 

 

 

 
Fig. 10. Relative positions (case 2) 

 

 

Fig. 11. Relative velocities (case 2) 
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Fig. 12. The trajectory in relative coordinates for the 
proposed guidance (case 2) 

 

The above figures show that the proposed 
guidance has a better convergence rate than the 
conventional sliding surface. Also, the proposed 
saturation function could improve the rate of 
convergence near zero and at the boundary layer. 
Relative distances and velocities after 80 seconds 
are shown in the Table 3. The PSMs schemes pass 
zero smoothly due to some disturbances and 
uncertainty; but the low velocity and rate would 
not allow violating the safe rendezvous 
requirements.  

 

Table 3. Relative distances and velocities at each dimension after 80 seconds 

Guidance law ࢌࢄ(m) ࢙࢓)ࢌࢄࢂ  (࢓)ࢌࢆ  (࢓)ࢌࢅ ࢙࢓)ࢌ࢟ࢂ  ( ࢙࢓)ࢌࢠࢂ  ( )  

PSM2 0.012  0.011  0.006  -3.7e-4 -3.1e-4 -1.1e-4 

PSM1 0.012  0.012  −0.006  -3.7e-4 -3.3e-4 1.2e-4 

CSM 0.060  0.032  8.4݁ − 4  -9.0e-4 -4.8e-4 -1.2e-4 

 

Table 4 shows the fuel consumptions by 
illustrating ΔV. As discussed for the previous case, the 
cost for the faster rate of convergence in z direction is 
the higher fuel consumption; this is while the new 
saturation function reduces the fuel consumption.of 
course in x and y directions, the fuel consumption of 
PSM2 is less than CSM and the rate of convergence is 
higher. 

Table 4. The ΔVs for terminal rendezvous (case 2) 

Guidance 
law 

࢙࢓)࢞ࢂࢤ ࢙࢓)࢟ࢂࢤ ( ࢙࢓)ࢠࢂࢤ ( ࢙࢓)ࢀࢂࢤ ( ) 

PSM2 80.30  79.70  11.64  171.64 

PSM1 86.42  83.97  11.61  182.00 

CSM 88.49  86.67  5.06  180.22 

The minimum relative distance becomes 
0.012m, which is appropriate in this case. Although, 
the model is linear in designing the proposed 
guidance; this accuracy might be suitable for 
berthing and docking considering the low velocities 
that converge to zero. Therefore, the switching 
surface is robust and efficient to non-linearity, 
disturbances and uncertainty. However, without 
disturbances, uncertainties, and non-linearity, the 
minimum distance gets closer to 0.03 m in 70 
seconds that is utterly sufficient for the final 
rendezvous in docking missions. 

Conclusion 

The present study develops a new sliding scheme to 
guide the chaser for terminal rendezvous. The 

sliding mode guidance scheme is switched by the 
defined function at the sliding surface. This change 
in sliding surface allows adjusting the convergence 
rate and commands. The terminal sliding mode is 
first utilized. In a layer with unity width of the 
relative distance, the convergence is accelerated by 
altering the power. The switching function is 
defined in order to avoid singularity and provide a 
safe rendezvous. The function changes the surface 
to achieve infinite time convergence and approach 
the chaser smoothly without any overshoots. The 
prevention of singularity and safe approach could 
be simultaneously obtained near the target by 
creating such changes in power. The new 
saturation function introduced could decrease the 
fuel consumption as compared with the 
conventional saturation function at the same 
boundary layer near the sliding surface. In spite of 
the proposed plan for a better performance, an 
increase occurred in the fuel consumption. There is 
a trade-off between the fuel consumption and a fast 
response which could be adjusted by changing the 
power in sliding surfaces.  

 Monte Carlo simulations were performed to 
illustrate the robustness and performance of the 
proposed guidance. In addition, non-linearity effect 
was investigated based on nonlinear model of 
motion.Accordingly, different numerical simulations 
indicated the robustness of the developed guidance in 
the presence of uncertainties, non-linearity and 
disturbances. The proposed robust sliding mode 
could appropriately acquire high accuracy and low 
relative velocity in the appropriate time.  
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