قانون هدایت مد لغزشی مرتبه دوم تطبیقی بر پایه تئوری لیاپانوف با اثبات پایداری زمان محدود

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 صنعتی مالک اشتر

3 دانشگاه صنعتی مالک اشتر- دانشکده برق

4 دانشگاه کمبریج

چکیده

در این مقاله یک کنترل مد لغزشی مرتبه دوم هموار تطبیقی جدید برای سیستم‌های غیرخطی نامعین ارائه شده است. پایداری زمان محدود با استفاده از تکنیک لیاپانوف اثبات شده است. کنترل کننده پیشنهادی شامل یک جمله تطبیقی برابر با نامعینی در یک مدت زمان محدود است. این الگوریتم برای طراحی قانون هدایت فاز نهایی یک رهگیر آشیانه‌یاب برای برخورد با اهداف مانوردار طراحی شده است. این قانون هدایت دستورات هدایت همواری صادر کرده و سیگنال کنترل قادر به پایدارسازی سرعت نسبی جانبی در یک مدت زمان محدود می­باشد. در نهایت، قانون هدایت پیشنهادی با قانون هدایت مد لغزشی مرتبه دوم در شبیه‌سازی مقایسه گردیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Lyapunov-basedAdaptive SmoothSecond-order Sliding Mode Guidance Law with Proving Finite Time Stability

نویسندگان [English]

  • Vahid Behnamgol 1
  • Ahmadreza Vali 2
  • ali mohammadi 3
  • َAshknaz Oraee 4
1 Malek Ashtar University of Technology
2 malek ashtar university of technology
3 malek ashtar university of technology
4 Cambridge University
چکیده [English]

A new adaptive smooth second-order sliding mode control is proposed for uncertain nonlinear systems in this paper. The finite time stability is proved using a Lyapunov technic. The proposed controller consists of an adaptive term equal to the uncertainty in finite time. This algorithm is used to design terminal guidance law for homing interceptors to intercept maneuvering targets. The guidance law generates smooth acceleration commands and the control signal is able to stabilize relative lateral velocity in a desired time. Finally, the proposed guidance law is compared with the second-order sliding mode guidance law from carried out simulations.

کلیدواژه‌ها [English]

  • Second-order sliding mode
  • Finite time convergence
  • Guidance law
  • Maneuvering target

[1] Young, K.D., Utkin, V.I. and Ozguner, U., “A Control Engineer’s Guide to Sliding Mode Control,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 3, 1999, pp. 328-342.

[2] Levant, A. and Michael, A., “Adjustment of high-order sliding-mode controllers”, International Journal of Robust and Nonlinear Control, 19, 2009, pp.1657–1672.

[3] Levant, A., “Quasi-Continuous High-Order Sliding-Mode Controllers”, IEEE Transaction on Automatic Control, Vol. 50, No. 11, 2005, pp. 1812-1816.

[4] Khalil, H.K., Nonlinear Systems, Prentice-Hall, 1996, pp. 601-617.

[5] Slotine, J.J. and Li, W., Applied nonlinear control, Prentice Hall Ed, 1991, pp. 276-309.

[6] Levant, A., “Chattering Analysis”, IEEE Transaction on Automatic Control, Vol. 55, No. 6, 2010, pp. 1380-1389.

[7] Boiko, I. and Fridman, L., “Analysis of chattering in continuous sliding-mode controllers”, IEEE Transaction on Automatic Control, Vol.50, No.9, 2005, pp.1442-1446.

[8] Boiko, I., Fridman, L. Pisano, A. and Usai, E., “Analysis of chattering in systems with second order sliding modes”, IEEE Transactions on Automatic Control, Vol. 52, No.11, 2007, pp. 2085-2102.

[9] Shtessel, Y.B., Shkolnikov, I.A. and Levant, A., “Smooth second-order sliding modes: Missile guidance application”, Automatica, 43, 2007, pp. 1470 – 1476.

[10]Shtessel, Y., Taleb, M. and Plestan, F., “A novel adaptive-gain super twisting sliding mode controller: Methodology and application”, Automatica, 48, 2012, pp. 759–769.

[11]Plestan, F., Shtessel, Y., Brégeault, V. and Poznyak, A., “New methodologies for adaptive sliding mode control”, International Journal of Control, Vol. 83, No. 9, 2010, pp. 1907-1919.

[12]Ferrara, A. and Rubagotti, M., “A Sub-Optimal Second Order Sliding Mode Controller for Systems With Saturating Actuators”, IEEE Transactions on Automatic Control, Vol. 54, No. 5, 2009, pp. 1082-1087.

[13]Plestan, F., Moulayb, E., Glumineaua, A. and Cheviron, T., “Robust output feedback sampling control based on second-order sliding model”, Automatica, 46, 2010, pp.1096_1100.

[14]Polyakov, A. and Poznyak, A., “Reaching Time Estimation for “Super-Twisting” Second Order Sliding Mode Controller via Lyapunov Function Designing,” IEEE Transactions on Automatic Control, Vol. 54, No. 8, 2009, pp. 1951- 1955.

[15]Levant, A., “Principles of 2-sliding mode design,” Automatica, Vol. 43, No. 4, 2007, pp. 576–586.

[16]Zhou, H., Song, Sh., Song, J. and Niu, J., “Design of Second-Order Sliding Mode Guidance Law Based on the Nonhomogeneous Disturbance Observer,” Hindawi Publishing Corporation, Journal of Control Science and Engineering, 2014.

[17]Wang, W., Xiong, Sh., Liu, X., Wang, S. and Ma, L., “Adaptive nonsingular terminal sliding mode guidance law against maneuvering targets with impact angle constraint,” SAGE, ProcIMechE Part G: J Aerospace Engineering, Vol. 0, No. 0, 2014, pp. 1-24.

[18]Zhou, D., Sun, Sh., Zhou, J.Y. and Teo., K.L., “A Discrete Sliding-Mode Guidance Law”, Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 137, 2015.

[19]Modirrousta, A., Sohrab, M. and Dehghan, S.M. “A modified guidance law for ground moving target tracking with a class of the fast adaptive second-order sliding mode”, SAGE, Transactions of the Institute of Measurement and Control, 2015, pp.1–13.

[20]Li, Y. and Xu, Q. “Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator”, IEEE Transactions on Control System Technology, Vol. 18, No. 4, 2010, pp. 798-810.

[21]Shtessel, Y. and Kochalummoottil, J., “Continuous adaptive finite reaching time control and second-order sliding modes”, IMA Journal of Mathematical Control and Information, 30, 2013, pp. 97–113.

[22]Utkin, V. I. and Poznyak, A. S., “Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method”, Automatica, 49, 2013, pp. 39–47.

[23]Babu, K.R., Sarma, I. G. and Swmy, K. N., “Switched Bias Proportional Navigation for Homing Guidance Against Highly Maneuvering Target,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6, 1994, pp. 1357-1363.

[24]Zhou, D., Mu, Ch. and Xu, W., “Adaptive Sliding-Mode Guidance of a Homing Missile,” Journal of Guidance, Control, and Dynamics, Vol. 22, No. 4, July-August  1999, pp. 589-594.

[25]Moon, J., Kim, K. and Kim, Y., “Design of Missile Guidance Law via Variable Structure Control,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001, pp. 659 - 664.

[26]Zhou, D. and Sun, Sh. “Guidance Laws with Finite Time Convergence”, Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, 2009, pp. 1838-1846.

[27]Rao, S. and Ghose, D., “Terminal Impact Angle Constrained Guidance Laws Using Variable Structure Systems Theory,” IEEE Transactions on Control Systems Technology, Vol. 21, No. 6, 2013, pp. 2350-2359.

[28]Kumar, Sh.R., Rao, S. and Ghose, D., “Nonsingular Terminal Sliding Mode Guidance with Impact Angle Constraints”, Journal of Guidance, Control, and Dynamics, Vol. 37, No. 4, 2014, pp. 1114-1130.

[29]Sun, Sh., Zhou, D. and Hou, W., “A guidance law with finite time convergence accounting for autopilot lag”, Aerospace Science and Technology, 25, 2013, pp. 132–137.

[30]Liu, L., Zhu, J., Tang, G. and Bao, W., “Diving  guidance  via  feedback  linearization  and  sliding mode  control”, Aerospace Science and Technology, Vol. 41, 2015, pp. 16–23.

[31]Utkin, V. I., Sliding Mode in Control and Optimization, Springer Verlag, Berlin, 1992.

[32]    Polyakov, A. and Poznyak, A., “Lyapunov Function Design for Finite Time Convergence Analysis of ‘Twisting’ and ‘Super Twisting’ Second Order Sliding Mode Controllers”, IEEE Conference, 2008.