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A new adaptive smooth second-order sliding mode control is proposed for uncertain 
nonlinear systems in this paper. The finite time stability is proved using a Lyapunov 
technic. The proposed controller consists of an adaptive term equal to the uncertainty in 
finite time. This algorithm is used to design terminal guidance law for homing 
interceptors to intercept maneuvering targets. The guidance law generates smooth 
acceleration commands and the control signal is able to stabilize relative lateral velocity 
in a desired time. Finally, the proposed guidance law is compared with the second-order 
sliding mode guidance law from carried out simulations.  
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Nomenclature12 34  

s  Sliding Variable 
u  Control Input Signal 

( )d t  Uncertainty 

k Reaching Term 

rt  Reaching Time 

V Lyapunov function 

dL Bound of the Uncertainty 

q  Line of Sight Angle 

q  Line of Sight Rate 

R  Relative Range 

R  Closing Velocity 

MA  Missile Lateral Acceleration 

MV  Missile Velocity 

TV  
Target Velocity 

M  
Missile Flight path angle 

T  
Target Flight path angles 

Introduction 

Sliding mode (SM) control is a very popular strategy 
to control uncertain nonlinear systems such as 
guidance loop. Its main features are the robustness of 
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closed-loop system and the finitetime convergence. In 
the classical first orderSM control, for the sliding 
variable to be stable, a switching function has to be 
used in the control law, which causes chattering of the 
control signals. Chattering effects in conventional SM 
controllers is one of the main disadvantages for 
practical applications[1-5]. In [6-8], chattering effect 
analysis is performed. Due to chattering, the 
application of the conventional SM control theory in 
the outer loop of a multi-loop control system such as 
guidance loop is not possible. This is because the 
commands generated by the guidance law cannot be 
followed by the autopilot in the inner control loop [9]. 

An approach to remove chattering effects is to 
replace the discontinuous switching function by a 
continuous approximated function. However, this 
method leads to precision reduction [5, 10 and 11]. An 
alternative method is to use the high order sliding mode 
(HOSM) control law. However, the main challenge of 
HOSM control is the use of high order time derivatives 
of the sliding variable. The only exception is the super 
twisting (ST) controller [10, 12 and 13]. Chattering 
effect is not eliminated, but attenuated in the ST 
controller due to a discontinuous function present under 
the integral. Therefore, ST is not very smooth [9]. In the 
recent years, time estimation for SOSM controllers via 
Lyapunov function designing has become an attractive 
research area [14]. In SOSM algorithms, the 
geometrical finite-time convergence analysis has been 
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done without the use of Lyapunov function approach. 
Some approaches depend on the homogeneity principle 
[15] which does not provide estimation for the 
convergence time.A homogeneity-based SOSM 
guidance law presented in [9] is only accurate for 
particular nonlinear systems. Then, a disturbance 
cancellation term is estimated using an observer. 

For the adaptation of uncertainty, adaptive SM 
controllers have been proposed [31-33] with the 
interest being the adaptation of uncertainty effects. 
Then, a reduced gain induces lower chattering [10, 
19]. Some various applications of adaptive SM control 
are proposed in [10, 19-22].  

Sliding mode control theories have been applied 
to many guidance problems. Using sliding (SM) 
control theory, a nonlinear and robust guidance law 
against maneuvering targets can be designed. The 
classical first-order SM and its continuous 
approximation versionsare used for designing simple 
guidance laws in [23-30]. By using SOSM control, 
guidance law is presented in [9]. This guidance law is 
based on uncertainty observer and the other problem 
with this method is homogeneity-based finite time 
stability proof. Also, observer-based SM guidance 
laws are designed in [16-18]. The main drawback in 
these guidance algorithms is the absence of a formal 
closed-loop system stability proof. 

This paper modifies the smooth second-order 
sliding mode (SSOSM) control proposed in [9]. In the 
proposed adaptive Lyapunov-based SOSM control 
algorithm, homogeneity-based SSOSM control is 
compared with when:  

1) The uncertainty is estimated with an adaptive 
term and canceled in feedback;therefore, disturbance 
observer is not used. 

2) The finite time stability of the closed-loop 
system is proved based on the Lyapunov theorem; 
therefore, the calculation of the convergence time is 
available. 

The proposed control algorithm is used for guidance 
law design. This guidance law generates a smooth 
acceleration command and ensures finite time 
convergences of the relative lateral velocity and the 
estimation of target acceleration normal to line of sight. 

Adaptive Smooth Second-order Sliding 
Mode Control Law 

Consider relationship (1) as the sliding dynamics 
introduced in a nonlinear system. 

( )s d t u                                            (1) 

The problem is to design controller u  that drives 
the sliding variable s  to zero in a finite time in the 
presence of the uncertainty ( )d t . Assume ( )d t is the 

uncertain term with ( ) dd t L  and its first derivative 

is ( )g t with ( ) gg t L . 

The conventional first-order SM controller is able 
to stabilize the sliding variable by  control input 

( )u ksign s                                          (2) 

where k  is the reaching term. Considering 

21

2
V s as a Lyapunov function, to meet the 

requirements, finite time convergence of s  must be 

V ss s   
                                                         

(3) 

where  is a positive constant, which implies 

reaching time is (0)
r

s
t  [5].  

The conventional SM controller (2) contains the 

discontinuous nonlinear function ( )sign s with gain 

dk L   . This function can cause chattering effects.  

Based on the continuous approximation method 
in boundary layer, the controller (2) can be replaced 

with ( )u ksat s  . This method brings a finite 

steady state error. 
The control law using second-order super twisting 

algorithm is obtained [9] 
1 2

1

2

( )

( )

u k s sign s w

w k sign s

   


                           
 (4) 

However, this control law is not completely smooth 
[9]. Also, a smooth second-order sliding mode 
(SSOSM) control is given below  

( 1)
1 1

( 1) ( 1)
2

( )

( )

m m

m m

u z k s sign s w

w k s sign s



 

    

               

 (5) 

With 1 2, 0k k   and 1m  presented in [9] for 

system (1) with existence estimation of the uncertainty 

1z . The stability of this algorithm is based on 

homogeneity technic and is not based on Lyapunov 
method. Therefore, reaching time estimation is not 
available using controller (5). 

In this paper, a modified version of controller (5) 
is proposed in the following theorem.  
Theorem 1: The adaptive smooth second-order sliding 
mode controller (6) with conditions (7) ensures the 
convergence of 0s   and  ( ) 0d t w   in a finite 

time.Parameters 1k , 2k , 3k  and   are positive 

constants and dL and gL are bounds of the uncertainty 

and its first derivative. 
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k k s sign s k sign
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  (6) 

 
1 2

4

, 0

positive constant

g d

k k

k L L w 






  
   

                      (7)  

Proof:Using controller (6) in the uncertain nonlinear 
system (1), we have closed-loop dynamics: 

1 3

2

2 3 4

( )

( )

( ) ( )

s k s sign s k d w

w k s sign s

k k s sign s k sign




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
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







            (8) 

and by introducing the estimation error as 
( )e d t w  , the error dynamics in closed-loop 

system (8) can be written as 

1 3

2

2 3 4

( )

( ) ( )

( ) ( )

s k s sign s k e

e g t k s sign s

k k s sign s k sign









  

    
  


 








            (9) 

Now, consider the following Lyapunov function: 

1 22 1

1 2

k
V s e 


  


                         (10) 

which is positive definite with 2 0k  .  

By taking the time derivative of the Lyapunov 
function (10), the following is obtained: 
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(11) 

Choosing 1 2, 0k k 
 

and  4 g d wk L L L    , 

where  is a strictly positive constant, yields:  

 1 2- ( )   g d wV k k s g t e L L L         
   

(12) 

The condition 

 ( )V x t  
                                            

                  (13) 

that implies  

   0 ( ) (0)V x t V x t  
                                 (14)  

 

defines 

 (0)V x
t


                                                                  (15)  

Therefore, condition (13) is a finite time 
condition [31, 32]. Hence, the closed-loop system error 
converges in t  that is the time  ( )V x t  reaches zero 

from an initial condition  (0)V x . The finite time 

stability of the closed-loop system error (9) is ensured.  

Guidance Law Design 

Consider two-dimensional interceptor-target engagement 
geometries as shown in Fig 1. 

The missile-target engagement model shown in Fig. 
1 can be described by nonlinear differential equations [9]: 

2

,

,

sin( )

cos( )

R

q
R T R M M

q

q R
q T q M M

R V

V
V A q A

R
V

q
R

V V
V A q A

R







   



    









                   

(16) 

where R  is the relative distance between 
interceptor and the target, q  is named the line of sight 

(LOS) angle, q  is the line of sight angular rate, 

qV Rq   is the relative lateral velocity and M and T  

are named as the flight path angles of the target and 
missile, respectively, 

,RTA , 
,T qA  are the target 

accelerations along and orthogonal to LOS and MA  is the 

interceptor acceleration. The object nullifies the 
relative lateral velocity ( 0qV Rq  ) in a finite time 

that causes interception with the target.  
To design guidance law using the proposed 

algorithm for the system equations given by (16), the 
sliding variable is introduced firstly, as follows: 

qs V
                                                                  

 (17) 

Therefore, the sliding dynamic is identified as 

, cos( )
q R

q T q M M
V V

s V A q A
R

     
         

(18) 

Then, the proposed smooth second-order sliding 
mode guidance law is achieved  
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  (19) 

This guidance law stabilizes qV  and ,T qe A w   

in a finite time without chattering effects in guidance 
command. 

 
Fig. 1. Missile-Target Engagement Geometry 

Numerical Simulation Results 

In this section, simulations are performed to 
investigate the performance of the proposed guidance 
lawassuming the initial relative distance is 40 km and 
the initial missile and target velocities are

800 ,  700m t
m mV Vs s  , respectively. 

For comparison, the smooth second-order sliding 
mode guidance (SSOSMG) law [9] 
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 (20) 

is also considered. , 1
ˆ
T qA z is the estimation of 

target acceleration normal to LOS achieved using the 
following observer 
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(21) 

Guidance laws are compared in the two scenarios. 
In the first scenario, target has constant -25 m/s2lateral 
accelerationand in the second, target maneuver is 
variable.  

A. Scenario I 
In this scenario, the target acceleration is constant -25 
m/s2 as shown in Fig. 2. In this case, an initial relative 
distance of 40 km is assumed, the initial missile and 
target velocities are 800 ,  700m t

m mV Vs s  , 

respectively and the initial values of LOS angle is 
zero. The missile and target initial flight path angles 
are 5 degM  and 150 degT  , respectively 

and the other parameter values are listed in Table 1. 

Table 1. Parameter values for the first scenario 

Guidance Law 1k  2k  3k  4k      N   0c  L  

Proposed 
Guidance Law 7 5 0.1 50 0.6 0.95 - - - 

SSOSMG 1.5 0.5 - - - - 4 0.1 1 
 

    

 
 
 
 

    

In this case, the target acceleration normal to 
LOS ( ,T qA ), the adaptive term of proposed guidance 

law ( w ) and , 1
ˆ
T qA z  in SSOSMG are plotted in 

Fig. 3. It is clear from this figure that the adaptive term 
in the proposed guidance law converges to the target 
lateral acceleration normal to LOS with a higher 
precision than SSOSMG. In Fig.4, the estimation 
errors in the proposed guidance law ( ,T qe A w  ) 

and in SSOSMG ( , 1T qe A z  ) are plotted. It is 

evident that the estimation precision in the proposed 
guidance law is higher than SSOSMG. The 
interceptor lateral acceleration, relative lateral 
velocity and line of sight rate are shown in Fig.s 5-
7. Both guidance laws generate smooth acceleration 
commands. In comparison to SSOSMG, precision is 
higher in the stabilization of the relative lateral 
velocity and LOS rate in the proposed guidance law. 
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Finally, in Fig. 8, the interception trajectory in the 
first scenario is plotted. 

 
 

 

Fig. 2. Target Acceleration (AT) in the First Scenario 

 

Fig. 3. Target Acceleration Normal to LOS (AT,q), Integral 
Term in the Proposed Guidance Law (w) and the Estimated 

Term in SSOSMG (z1) in the First Scenario 

 

Fig. 4. Target Acceleration Estimation Error in the Proposed 
Guidance Law (AT,q+w) and SOSMG (AT,q-z1) in the First 

Scenario 

 

Fig. 5. Missile Lateral Acceleration (AM,q) in the First 
Scenario 

 

Fig. 6. Relative Lateral Velocity (Vq) in the First Scenario 

 

Fig. 7. Line of Sight Rate in the First Scenario 

 
Fig. 8. Interception Trajectory in the First Scenario 

A. Scenario II 
In this scenario, the performance of guidance laws 
to intercept targets with variable maneuvers as 
shown in Fig.9 is addressed. In this case, initial 
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relative distance is assumed to be 141421.4 meters, 
and the initial missile and target velocities are 

800 ,  2000m t
m mV Vs s  , respectively. The 

initial value of LOS angle is 45 degrees, the missile 
and target initial flight path angles are 30 degM 
and 225degT  , respectively and the other 

parameter values are listed in Table 2. 
In this case, Fig.s 10 and 11 show that the 

adaptive term in the proposed guidance law converges 
the target lateral acceleration normal to LOS and the 
estimation error ( ,T qe A w  ) is stabilized with a 

higher precision than SOSMG law. As can be seen 
inFig. 11, the estimation error in SOSMG law is higher 
than the proposed law, particularly towards the end of 
the simulation time. As shown in Fig.s 12-14, the peak 
of the commanded acceleration using the proposed 
guidance law is lower than SSOSMG and relative 
lateral velocity and LOS rate converge to zero in finite 
time with higher precision. Finally, in Fig. 15 the 
interception trajectory in the second scenario is plotted. 

Table 2. Parameter values for the second scenario 

Guidance Law 1k  2k  3k  4k      

Proposed 
Guidance Law 

4 4 0.05 50 0.5 0.95 

SSOSMG 2 0.5 - - - - 

 

Fig. 9. The Target Acceleration (AT) in the Second Scenario 

 

Fig. 10. Target Acceleration Normal to LOS (AT,q), Integral 
Term in the Proposed Guidance Law (w) and Estimation in 

SSOSMG (z1) in the Second Scenario 

 

Fig. 11. Target Acceleration Estimation Error in the 
Proposed Guidance Law (AT,q+w) and SOSMG (AT,q-z1) in 

the Second Scenario 

 

Fig. 12. Missile Lateral Acceleration (AM,q) in the Second 
Scenario 

 

Fig. 13. Relative Lateral Velocity (Vq) in the Second 
Scenario 

 

Fig. 14. Line of Sight rate in the Second Scenario 
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Fig. 15. Interception Trajectory in the second Scenario 

Conclusion 

In this paper, a new adaptive smooth second-order 
sliding mode guidance law is proposed. The finite 
time stabilization of the closed-loop system is proved 
using Lyapunov method. This guidance law 
guarantees finite time convergence of the relative 
lateral velocity as sliding variable in the presence of 
target acceleration as uncertainty and generates 
smooth acceleration commands as control signals. 
Simulation results show the effectiveness of the 
proposed guidance law in comparison with a 
homogeneity-based second-order sliding mode 
guidance law. 
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