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This paper considers the problem of asymptotic stabilizing of velocity and body rates 
of a spacecraft in the presence of uncertainties and external disturbances. One of the 
important methods in controller design for nonlinear systems; is designing based on the 
passivity concept. This concept which provides a useful tool for analysis of nonlinear 
systems has been also used for asymptotic stabilizing of nonlinear dynamical systems 
especially mechanical systems. The passivity-based control law is a static output feedback 
and has valuable features. Because of existence of uncertainties and external 
disturbances in the state-space of equations of physical systems; first the robust version of 
passivity-based control method, which is recently developed in literature, is given and the 
control law for nonlinear uncertain systems with affine structure is presented. Then, this 
approach is used in controller design for a spacecraft. Since, this paper considers only 
the stabilization of velocity and body rates, therefore the reduced-order model is 
extracted from the state-space equation of a spacecraft with six degree of freedom and 
then the robust control law is designed. Computer simulations show the efficiency of the 
proposed controller in robust asymptotic stabilizing of the velocity and body rate vectors 
of the spacecraft in the presence of uncertainties and external disturbances. 
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Nomenclature1 23  

x  states vector of the system 
u  input vector of the system 
y  output vector of the system 

r position of the spacecraft 
v  velocity of the spacecraft 
q  quaternion of the spacecraft 
  body rate of the spacecraft 
m  mass of the spacecraft 

  
the distances from the center of mass of 
the points where the forces are applied 

F force vector 

T  torque vector 

J  moments of inertia 
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Introduction 
Controller design for spacecraft is an important 
problem which has been studied in literatures. For 
instance in [1], a controller is designed based on the 
sliding mode method. Authors of [2]; proposed a 
controller based on state dependent Riccati equation. 
Controller design for spacecraft stabilization based on 
backstepping adaptive sliding mode was given in [3]. 
Practically; in the state space equations of a spacecraft 
system, like other dynamical systems; may be 
uncertainty due to, external disturbances, parameter 
uncertainties or unknown nonlinear function which 
may be caused by inaccurate modeling or model 
reduction. Therefore, the proposed controllers should 
have a robust manner in the presence of uncertainties. 

In [4]; a robust tracking control under input 
saturation was designed. Also, finite-time controllerfor 
robust stabilization of spacecraft were presented in 
[5,6]. 
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Among the nonlinear control method; passivity-based 
control is an important category [7-11]. Passivity-
based control has application in many engineering 
problems like electromagnetic systems, process 
control, motor control, power electronics, mechanical 
systems [11-15]. 
There is a valuable feature for passive systems which 
can be stabilized utilizing a static output feedback. 
If a nonlinear passive system be zero-state observable 
then will be asymptotically stabilized by a static 
output feedback like ( )u y  (where (0) 0  and 

( ) 0Ty y  , for all 0y  ). 
In this regard, the Kalman-Yakubovich-Popov (KYP) 
lemma is an important tool .The robust version of this 
lemma is also proposed [16]. According to it, the 
robust version of passivity-based control is recently 
presented [16-20]. 
The goal of this paper is designing a controller for 
robust stabilizing the velocity and body rate vectors of 
a spacecraft in the presence of uncertainties and 
external disturbances. To achieve this purpose, the 
robust passivity-based control method is used. 
Computer simulations show the efficiency of the 
proposed controller in robust asymptotic stabilizing of 
the velocity and body rate vectors of the spacecraft. 

Robust Passivity-Based (RPB) Control 
Method 

In this section, the robust control law is proposed for 
nonlinear affine systems in the presence of 
uncertainties and external disturbances, based on RPB 
control method. The effect of these unknown terms 
can be removed by a RPB controller which also 
asymptotically stabilizes the nonlinear system. 
Consider the following uncertain nonlinear system: 

( ) ( )( ( ) ( ))
( )

x f x G x u D x x
y h x





   



 (1) 

where nx R  represents the state vector, mu R  is 

the input vector and my R  is the output vector. 

Also, ( )f x  and ( )G x are Locally Lipschitz functions 

and ( )h x  is a continuous vector function (where 

(0) (0) 0f h  ). ( )D x is the external disturbance 

and ( )x  is the unknown uncertainties. 

First, suppose ( ) ( ) 0D x x   , therefore the nominal 

system is as follows: 

( ) ( )
( )

x f x G x u
y h x





 



 (2) 

System (2) is passive, if there exist a positive semi-
definite function :S x R  (which (0) 0S  ) such 

that [9]: 

TS y u  (3) 

 
KYP Lemma 1 [9]: Consider system (2). Suppose 
that exist a positive semi-definite function 

:S x R , with (0) 0S   for system (2), such 

that: 

( ) 0

( ) ( )T

S
f x

x
S

G x h x
x







 

 


 (4) 

then the system (2) is passive. 
 
Definition 1 [9]: Consider system (2), if for 0y 
and 0u  , there is not any solution for ( , 0)x f x , 

except ( ) 0x t  then system (2) is zero-state 

observable. 
 
Theorem 1:Suppose that system (2) is passive with a 
radially unbounded positive definite storage function 

( )S x  and it is zero-state observable, then its 

equilibrium point 0x  , can be globally 
asymptotically stabilized by the following control law: 

( )u y   (5) 

where (.)  is a function ( (0) 0  ) that is Locally 

Lipschitz, and for all 0y  , ( ) 0Ty y  . 

Proof: [9].  
 
Now consider the system (1) and suppose ( )D x and 

( )x are non-zero. The following theorem which is 

based on the robust version of KYP lemma, gives the 
sufficient conditions for designing a control law. 
 
Theorem 2: Consider the zero-state observable 
nonlinear system (1), and suppose there exists a 
positive definite storage function ( )S x  such that: 

( ) 0
S

f x
x
 


 (6) 

( ) ( )TS
G x h x

x
 


 (7) 

and 
2

1 1 1 0( ) ( ),D x y x     (8) 

2
2 2 2( ) ( ), 0x y x      (9) 

where 1 , 2 are known positive constants and 

1 2( ), ( )x x  are known functions. Then the 

following robust control law asymptotically stabilizes 
the nonlinear system (1) in the presence of 
uncertainties and external disturbances. 

2 2
1 1 2( ( ) ( )) ( )u k y x y x y       (10) 
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where 1k  is a positive constant which is

1 1 2max{ , }k   , and ( )y  satisfies the inequality

( ) 0Ty y  for all 0y  . 

Proof: [17]. 

Application of RPB Method for Spacecraft 
Stabilization 

In this section the proposed method (RPB) is used for 
robust stabilizing of the velocity and body rate vectors 
of a spacecraft. 
The equations of a spacecraft with six degrees of 
freedom are as follows [2]: 

1 1 1

3 3 3 3

3 3 3 3

4 3 4 3

0 0

(1 / ) 0

(1 / 2) ( ) 0 0

r vr

v m Iv F

qq

J J J J





     

 

 

 

 


 
 



    
                  
         







 

 (11) 

where 3r R , 
3v R , 

4q R  and 
3R are 

position, velocity of the spacecraft, quaternion and body 
rates of the spacecraft, respectively. The mass of the 
spacecraft is m. The distances from the center of mass 

of the points where the forces are applied are 
3R  , 

and  represents the elements of the skew symmetric 

matrix  . Also, 3F R includes the elements of 

control force vector and 3T R  is a vector of control 
torque of the spacecraft. The moments of inertia are 

3 3J R  .Furthermore, of   and ( ) are: where 
3r R , 

3v R , 
4q R  and 

3R are position, 

velocity of the spacecraft, quaternion and body rates of 
the spacecraft, respectively. The mass of the spacecraft 
is m. The distances from the center of mass of the 

points where the forces are applied are 
3R  , and 

 represents the elements of the skew symmetric 

matrix  . Also, 3F R includes the elements of 

control force vector and 3T R  is a vector of control 
torque of the spacecraft. The moments of inertia are 

3 3J R  Furthermore, of   and ( ) are: 

1 2 3

3 2

1 3 2

3 1

2 3 1

2 1

3 2 1

0

0 ( )

0

0

0

0

0

,

 

  

 

  
  


  
  



 



  


 





 
   
   
   
    

 

  

Here, the purpose is to asymptotically stabilize the 
velocity and body rates of the spacecraft. Since, in 
dynamical equations of v and  (refer to equations 
(11)), the state variables r  and q ,have not been 

appeared; thus in order to stabilize v  and  the 
following reduced-order equations may be considered. 

3 3 3 3

11
3 3

(1 / ) 0

0

m Iv v F

JJ J T



  
 





 


      
            



 
 (12) 

Considering the state-space equations(12) in the 
structure of equation (2), then: 

v
x


 
 
  







, 
1

v
f

J J



 

 
  

  




, 3 3 3 3

1
3 3

(1 / ) 0

0

m I
G

J

 




 
  
  

, 

F
u

T

 
  
 

 (13) 

Also, assume that the ( , )D v   and ( , )v   terms 

which may cause by inaccurate modeling or model 
reduction, are exist. 

3 3 3 3

11
3 3

(1 / ) 0

0

( , ) ( , )

m Iv v

JJ J

F
D v v

T



  

 

 





 



  

    
         

      



 
 (14) 

If ( , ) (1/ 2) (1/ 2)T TS v v v     be assumed as 

a candidate of the storage function for the system (14), 
then: 

1 1

( ) (1 / 2) (1 / 2)

(1 / 2) (1 / 2)

1 / 2( ) ( ) ( )

T T

T T

T T

S
f x v v v v

x

J J J J

   

    


 


 

    

 

 

 

 (15) 

with numerical analysis, it can be shown that the 
equation (15) is negative definite therefore the 
condition (6) is satisfied. 
Now, according to condition (7), by substituting G  
from (13), then: 

3 3 3 3
1

3 3

(1/ ) 0
( ) .

0
T m IS S S

y G x
Jx v w

 




             
 (16) 

therefore, if the output of (14) is defined as follow, the 
condition (7) will be also satisfied. 

1

(1 / )

( )T

m v
y

J 

 
  
 

 (17) 

Suppose that ( )D x  and ( )x satisfying the 

condition (8) and (9). Now, the task is to design the 

control vector 
T

u F T   , according to the 

Theorem 2, for robust asymptotically stabilizing of the 

state vector 
T

x v     in the presence of the non-

zero terms ( )D x and ( )x . 

Computer Simulations 
In this section the proposed controller is utilized for 
the system (14) and the time-response of the elements 
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