شبیه‌سازی تصاویر آسمان شب با مدل روزنه ایده‌آل برای حسگر ستاره

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 صنعتی خواجه نصیرالدین طوسی

چکیده

در این مقاله با هدف استفاده در نرم‌افزارهای طراحی و بسترهای تست حسگر ستاره به شبیه‌سازی تصاویر آسمان شب و حسگر ستاره پرداخته شده است. برای این منظور ابتدا الگوریتمی جامع و دقیق به‌منظور شبیه‌سازی تصاویر آسمان شب بر اساس مدل روزنه ایده‌آل و استفاده از توابع توزیع نقطه‌ای و گاوس ارائه شده است. سپس به‌منظور ایجاد واقع‌گرایی بیشتر، منابع خطاهای اتفاقی و سیستماتیک، کشیدگی تصاویر ناشی از دینامیک بالای سکو و همچنین پخش نامتقارن نور پس‌زمینه ناشی از حضور ماه، خورشید و سیارات منظومه شمسی شبیه‌سازی شده است. درنهایت با توجه به اهمیت واقع‌گرایی در رویکرد شبیه‌سازی حل مسئله، استفاده از روش ردیابی دقیق پرتو به‌عنوان جایگزین روش روزنه ایده‌آل پیشنهاد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Night Sky Images with an Ideal Pinhole Model for a Star Sensor

نویسندگان [English]

  • Amie ali Nikkhah 1
  • farsahd somayehee 2
  • Jafar Roshanian 3
1 K. N. Toosi University of Technology
2 Faculty Aerospace Engineering, KN Toosi University of Technology
3 K. N. Toosi University of Technology
چکیده [English]

In this paper, the aim is to simulate night-sky images for use in star-sensor designing software. For this purpose, a comprehensive and precise algorithm was developed to simulate night sky images based on the ideal pinhole method and the use of Gaussian distribution functions. Then, in order to create more realism, sources of random and systematic errors, the elongated images due to the high dynamics of the platform, as well as the asymmetric back-lighting of the moon, the sun, and the planets of the solar system have been simulated. Finally, considering the importance of realism in the problem-solving simulation approach, the use of precision ray tracking method as an alternative to the ideal pinhole method is suggested.

کلیدواژه‌ها [English]

  • star sensor
  • Star catalog
  • Celestial Sphere
  • Ideal Pinhole
  • ray tracing

[1]   SUN, T., XING, F., and YOU, Z., “Research on dynamic Performance of Star Tracker,” Instrumentation, Vol. 1, 2015, p. 3.

[2]   Winter, D.P. and Wisemiller, E.M., “Simulation of a Ccd Star Tracker,” Winter Simulation Conference Proceedings, 1975, pp. 51–58.

[3]   Nardell, C.A., “Image Processing, Simulation and Performance Predictions for the Micromak Star Tracker,” Proc. SPIE, Vol. 5916, 2005, p. 59160U–59160U–12.

[4]   Tappe, J. A., Kim, J.J., Agrawal, B.N., Approved, F., and B. No, O. M., Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude, Monterey, California, Naval Postgraduate School, 2009.

[5]   Hua-Ming, Q., Hao, L. and W. Hai-Yong, “Design and Verification of Star-Map Simulation Software Based on CCD Star Tracker,” 2015 8th Int. Conf. Intell. Comput. Technol. Auto, 2015, pp. 383–387,.

[6]   Yang, J., Liang, B., Zhang, T., Song, J. and Song, L., “Laboratory Test System Design for Star Sensor Performance Evaluation,” J. Comput, Vol. 7, No. 4, 2012, pp. 1056–1063.

[7]   Ettouati, I., Mortari, D., and Pollock, T., “Space Surveillance Using Star Trackers, Part I: Simulations,” Adv. Astronaut. Sci. Vol. 124, No. II, 2006, pp. 2073–2087.

[8]   Shen, J., Zhang, G., and Wei, X., “Simulation analysis Of Dynamic Working Performance for Star Trackers.” J. Opt. Soc. Am. A. Opt. Image Sci. Vis, Vol. 27, No. 12, 2010, pp. 2638–47.

[9]   Ma, L., Hu, C., Wang, X., and Dai, D., “Advances And Accuracy Performance of the Star Trackers,” ISPDI 2013 - Fifth Int. Symp. Photoelectron. Detect. Imaging, Vol. 8908, 2013, p. 89080M.

[10] Zhao, X.F., Bin Liu, G., and Liu, C.S., “Algorithm Design and Implementation of Dynamic Star Simulator,” Adv. Mater. Res, Vol. 722, 2013, pp. 187–193.

[11] X. Wei, W. Tan, J. Li, and G. Zhang, “Exposure time optimization for highly dynamic star trackers,” Sensors (Switzerland), vol. 14, no. 3, pp. 4914–4931, 2014.

[12] Li, Z., Liang, B., Zhang, T., and Zhu, H., “Image Simulation for Airborne Star Tracker Under Strong Background Radiance,” CSAE 2012 - Proceedings, 2012 IEEE Int. Conf. Comput. Sci. Autom. Eng, Vol. 1, 2012, pp. 644–648.

[13] Truesdale, N.A., Dinkel, K.J., Dischner, Z.J.B., Diller, J.H. and Young, E.F., “Daystar: Modeling And Test Results of A Balloon-Borne Daytime Star Tracker,” IEEE Aerosp. Conf. Proc., 2013.

[14] Truesdale, N. and et al. “Daystar: Modeling The Daytime Performance of A Star Tracker For High Altitude Balloons,” 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., 2013, pp. 1–11.

[15] Sun, C., Liu, H., Zhang, X., and Yu, Q., “An INS Data Based Approach to Star Image Simulation for Ship-Borne Star Sensor,” Selected Papers of the Chinese Society for Optical Engineering Conferences held October and November 2016, 2017, p. 102552J–102552J.

[16] Roshanian, J., Yazdani, Sh., Hoseini, S,M., and M. Ebrahimi, "Star Catalog Criteria Selection and Mission Catalog Update for a Typical Star Tracker," Jouranl of Space Science and Technology, vol. 5, No. 4, 20013, pp. 1-8.

[17] Thomson, D. B., Introduction to Geodetic Astronomy, No. 217. Department of Surveying Engineering. University of New Brunswick, 1981.

[18] Krakiwsky, E. J., U. of  N. B. D. of S. Engineering, and D. E. Wells, “Coordinate Systems in Geodesy,” No. 217, 1971, p. 119.

[19] Glassner, A. An Introduction to Ray Tracing, vol. 8. 1989.

[20] G. Zhang, Star Identification: Methods, Techniques and Algorithms. Springer, 2017.

[21] C. Rafael Gonzalez and R. Woods, “Digital image processing,” Pearson Educ. 2002.

[22] J. Kovalevsky, P. K. Seidelmann, I. Committee, F. Academy, and U. S. N. Observatory, Fundamentals of astrometry. Cambridge University Press, 2004.

[23] D. Titterton and J. L. Weston, Strapdown inertial navigation technology, Vol. 17. IET, 2004.

[24] Murray, L., “Smart Optics: Wavefront Sensor-Less Adaptive Optics-Image Correction Through Sharpness Maximisation,” NUI Galw, 2006.

[25] Liebe, C. C., “Accuracy Performance of Star Trackers - A Tutorial,” IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 2, 2002, pp. 587–599,

[26] Lipson, S. and H. Lipson, Optical physics. 1995.

[27] Ajoy Ghatak, Optics. ata McGraw Hill Publishing Company Limited, 2005.

[28] Diego, F. “Throughput خf Astronomical Instruments,” no. December, 1985, pp. 1209–1214.

[29] Katake, A.B., “Modeling, Image Processing and Attitude Estimation of High Speed Star Sensors,” Texas A&M University, 2006.

[30] Huffman, K.M., and et al. “Designing Star Trackers To Meet Micro-Satellite Requirements,” Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2006.

[31] Knutson, M., Miller, D., and Lim, S., Fast Star Tracker Centroid Algorithm for High Performance CubeSat with Air Bearing Validation, No. June. 2012.

[32] Arbabmir,  M. V., Mohammadi, S.M., Salahshour, S., and Somayehee, F., “Improving Night Sky Star Image Processing Algorithm for Star Sensors,” J. Opt. Soc. Am. Vol. 31, No. 4, 2014, pp. 794–801.

[33] Liu, H.B., Tan, J.C., Yang, J.K., Li, X.J., and Fan, Q.C., “Method for Thermo-optic Analysis in a Star Sensor,” Def. Sci. J., Vol. 60, No. 3, 2010, pp. 276–281.