نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 مدیر مرکز ماهواره و فضاپیما، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 عضو هیئت علمی مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر،تهران،ایران

چکیده

 با توجه به اهمیت حضور عدم قطعیت­ ها در طراحی سیستم ­های پیچیده مهندسی، در این پژوهش، روند طراحی بهینه چندموضوعی سیستم پیشرانش دومولفه­ای در حضور عدم قطعیت­ ها ارائه می­گردد که علاوه بر کمینه نمودن جرم سیستم از مقاومت مطلوبی نسبت به عدم ­قطعیت­ ها برخوردار باشد. براین اساس روندنمای طراحی چندموضوعی سیستم پیشرانش دومولفه ­ای در دو حالت طراحی بهینه و طراحی بهینه مقاوم نشان ­داده می­شود. سپس با اعمال عدم قطعیت­ ها، نتایج جرمی، عملکردی و هندسی سیستم پیشرانش به تفکیک برای طراحی بهینه، طراحی مقاوم و طراحی بهینه مقاوم بیان می­گردد. با توجه به نتایج نشان داده می­شود که کمترین جرم در حالت طراحی بهینه اتفاق می­افتد. اما با اعمال عدم قطعیت­ ها در این­ نقطه مشاهده می­ گردد که کمترین مقاومت و قابلیت اطمینان را دارا می­ باشد. همچنین سعی می­شود تفاوت مفاهیم طراحی مقاوم و طراحی بهینه مقاوم به کمک نتایج تشریح ­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Three Design approach of a bipropellant propulsion system including multidisciplinary design optimization, Robust and Optimum-Robust

نویسندگان [English]

  • Amirhossain Adami 1
  • Hojat Taei 2
  • Mansour Hozuri 3

1 Satellite & LV center, Aerospace Department, Malek Ashtar University of Technology.Tehran.IRAN

2 Faculty member of Aerospace University Complex, Malek Ashtar University of Technology, Tehran, IRAN

3 Department of Aerospace Engineering, Malek Ashtar University of Technology, Tehran, IRAN

چکیده [English]

Considering the importance of the presence of uncertainties in the design of complex engineering systems, in this research multidisciplinary design optimization process for a bipropellant propulsion system in the presence of uncertainties, which in addition to minimizing the system mass, has a high robust. Based on this, the multidisciplinary design view of the bipropellant propulsion system is expressed in both optimum design and optimum robust design. The continued with the application of uncertainties, the mass, operational and geometric results of the propulsion system are expressed in terms of optimum design, robust design and optimum robust design. According to the results, it is shown that the lowest mass occurs in optimum design mode. But with uncertainties, it is observed at this point that it has the least robust and reliability. It also attempts to explain the difference between the concepts of robust design and optimum design with the help of results

کلیدواژه‌ها [English]

  • Multidisciplinary design optimization
  • Bipropellant propulsion system
  • Uncertainty
  • Robust design optimization
[1]  E. M. Beale, “On minimizing a convex function subject to linear inequalities,” Journal of the Royal Statistical Society. Series B (Methodological), Vol. 17, No. 2 , 1955, pp. 173-184.
[2]  T. S. Hené, V. Dua, E. N. Pistikopoulos, “A hybrid parametric/stochastic programming approach for mixed-integer nonlinear problems under uncertainty”, Industrial & engineering chemistry research, Vol. 41, No. 1, 2002, pp. 67-77.
[3]  L. Stougie, Design and analysis of algorithms for stochastic integer programming, Ph.D. Thesis, 1987.
[4]  F. Bastin, “Trust-region algorithms for nonlinear stochastic programming and mixed logit models,” Doctorat en sciences économiques Université Notre Dame de Namur Belgique Union Européenne, Namur, Belgium, Ph.D. Thesis, 2004.
[5]  J. M. Mulvey, R. J. Vanderbei, S. A. Zenios, “Robust optimization of large-scale systems,” Operations research, Vol. 43, No. 2, 1995, pp. 264-281.
[6] Steve, H., "Launch Vehicle and Spacecraft System Design Using the Pistonless Pump," Space 2004 Conference and Exhibit, American Institute of Aeronautics and Astronautics, Vol.7004,  2004.
[7] Erichsen, P., "A Quick-Look Analysis Tool for the Impulse Performance of Spacecraft Propulsion Systems," Presented at the 2nd European Conference for Aerospace Sciences (EUCASS), Brussels, Belgium, 2007.
[8]   Juergen, M., "Thruster Options for Microspacecraft - A Review and Evaluation of Existing Hardware and Emerging Technologies," Presented at the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, 1997.
[9]     Limbourg P., Aponte S., “An Optimization Algorithm For Imprecise Multi-Objective Problem Functions,” Evolutionary Computatio vol. 1, 2005, pp. 459-466.
[10]  Naseh H, Alipour A. Propellant Management Device (PMD) Design Optimization of Hydrazine Fuel Tank. IQBQ. Vol.17, No. 7,  2017, pp.152-160 .(in Persian).
[11]   Fazeley, H. R., Taei, H., Naseh, H., & Mirshams, M. “A multi-objective, multidisciplinary design optimization methodology for the conceptual design of a spacecraft bi-propellant propulsion system.’’ Structural and Multidisciplinary Optimization, Vol.53, No. 1, 2016, pp.145-160.
[12]   Karimi .H, Safaei .H, Mohammadi. M,  Presented at the 14rd Joint International Conference of the Iranian Aerospace Society, , 2014.(in Persian).
[13]  Nosratollahi, M., Adami, A. H., Multidisciplinary design optimization of a controllable reentry capsule for minimum landing velocity, in 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, 2010, pp. 3009.
[14]  DU X. and Chen, W., “Collaborative Reliability Analysis under the Framework of Multidisciplinary Systems Design,” journal of Optimization and Engineering, Vol. 6, 2013, pp. 63-84.
[15]   Gu, X., Ranaud, J., Batill, S., Brach, R. and Budhiraja, A., “Worst casepropagated uncertainty of multidisciplinary systems in robust design optimization,” Struct Multidisciplin Optim , Vol. 20, No. 3, 2000, pp. 190-213.
[16]   Marvis, D. N. , Delaurentis D. A., “Uncertainty Modeling And Management In Multidisciplinary Analysis And Synthesis,” Aiaa, 2000 .
[17]  Kim, Tae-Hyoung, Ichiro Maruta, and Toshiharu Sugie. “Robust PID controller tuning based on the constrained particle swarm optimization,” Automatica , vol. 44, 2008, pp. 1104-1110.
[18]   Michael J. G. , Robust Control Systems, Wiley, 2006.
[19] D. Schrage, T. Beltracchi, A. Dodd, L. Niedling, J. Sobieszczanski-Sobieski, “technical committee on multidisciplinary design optimization (MDO) white paper on current state of the art,” AIAA Paper MDO Technical Committee Report, 1991.
[20]  J. P. Giesing, J.-F. M. Barthelemy, “A summary of industry MDO applications and needs,” AIAA White Paper, 1998.
[21]  Jamali, Sajjad, Seyedhosein Poortakdoost, and Seyed javad Mousavi. “Multidisciplinary and multuobjective  optimization of a flying projective using evolutionary algorithm (NSGA-II,”  Journal of Aviation,  Vol.16, No. 1, 2014,  pp.17-32.(in Persian).
[22]  Brown, Nichols F., and John R. Olds. “Evaluation of multidisciplinary optimization techniques applied to a reusable launch vehicle.” Journal of Spacecraft and Rockets, Vol.43, No. 6, 2006,  pp.1289-1300.
[23]  G. Taguchi, S. Chowdhury, S. Taguchi, “McGraw Hill Professional”, Robust engineering:  2000.
[24]  N. P. Suh, S.-H. Do, “Axiomatic design of software systems,” CIRP Annals-Manufacturing Technology, Vol. 49, No. 1, 2000, pp. 95-100.
[25] G.J. Park, T.H. Lee, K. H. Lee, K.H. Hwang, “Robust design: an overview,” AIAA journal, Vol. 44, No. 1, 2006, pp. 181-191.
[26] W. Y. Fowlkes, C. M. Creveling, “Engineering methods for robust product design,” Addison-Wesley, 1995.
[27]   K. dEntremont, K. Ragsdell, “Design for latitude using TOPT,” ASME Advances in Design Automation, DE, 1988, pp. 265-272.
[28] Adami, Amirhossein, Mahdi Mortazavi, and Mehran Nosratollahi. “Multidisciplinary design optimization of hydrogen peroxide monopropellant propulsion system using GA and SQP.’’ International Journal of Computer Applications, Vol.113, No. 9, 2015, pp. 14-21.
[29]  Sutton, George P., and Oscar Biblarz. Rocket propulsion elements. 7rd edition, John Wiley & Sons, 2017.
[30]   Adami, Amirhossein, Mortazavi, M., Nosratollahi ., “Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary Design Optimization Algorithm.” Journal of Fluid Flow, Vol.2,2015.