بهینه‌سازی چندهدفه پیکربندی لوله‌های حرارتی متصل به پنل خورشیدی یک ماهواره با نشانه‌روی خورشیدی

نویسندگان

1 پژوهشکده سامانه‌های ماهواره، پژوهشگاه فضایی ایران

2 پژوهشگر، پژوهشکده سامانه‌های ماهواره، پژوهشگاه فضایی ایران

چکیده

کاهش دمای آرایه خورشیدی باعث افزایش بازده الکتریکی آن می‌شود. افزایش بازده و در نتیجه توان تولیدی آرایه‌های خورشیدی ماهواره، مزایای فروانی را در پی دارد. یکی از راه‌های نوین تعدیل شرایط دمایی سلول‌های خورشیدی بهره‌گیری از لوله‌های حرارتی است. در این مقاله، با استفاده از الگوریتم بهینه‌‌سازی ژنتیک چندهدفه، طراحی بهینه پیکربندی لوله‌های حرارتی متصل به آرایه‌های خورشیدی یک ماهواره با نشانه‌روی خورشیدی در مدار پایین صورت پذیرفت. هدف از این بهینه‌سازی، کمینه‌سازی همزمان دمای سلول‌ها و جرم لوله‌های حرارتی به کار است. شبیه‌سازی حرارتی ماهواره با نرم‌افزارهای سیندا-فلوئینت و ترمال دسکتاپ صورت پذیرفت و این شبیه‌سازی‌ها با استفاده از نتایج تجربی مدل حرارتی ماهواره در محفظه خلأ، صحت سنجی گردید. سپس به کمک الگوریتم ژنتیک مقادیر بهینه دمای سلول خورشیدی به منظور دستیابی به بازدهی بیشتر و کمترین جرم لوله های حرارتی با کمک جبهه پارتو استخراج شد. با انتخاب شش نقطه از جبهه پارتو به بررسی دما و بازده سلو‌‌ل‌های خورشیدی پرداخته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Multi objective design optimization of heat pipes configuration attached to the solar panels of a sun pointing satellite

نویسندگان [English]

  • Mehrdad Khosravi 1
  • Saeid Salehy 2
  • Mohsen Abedi 1
1 Satellite research institute, Iranian space research center
2 Researcher, Satellite research institute, Iranian space research center

[1]  Gong, J., Cha, G. and Ju, Y. S., "Thermal Switches Based on Coplanar EWOD for Satellite Thermal Control," in IEEE 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008, pp. 848-851.

[2]  Escobar, E., Diaz, M. and Zagal, J. C., "Evolutionary Design of a Satellite Thermal Control System: Real Experiments for a CubeSat Mission," Applied Thermal Engineering, Vol. 105, 2016, pp. 490-500.

[3]  Liu, T., Sun, Q., Meng, J., Pan, Z., and Tang, Y., "Degradation Modeling of Satellite Thermal Control Coatings in a Low Earth Orbit Environment," Solar Energy, Vol. 139, 2016, pp. 467-474.

[4]  Sato, D., Yamada, N. and Tanaka, K., "Thermal Design of Photovoltaic/Microwave Conversion Hybrid Panel for Space Solar Power System," IEEE Journal of Photovoltaics, Vol. 7, 2017, pp. 374-382.

[5]  Skoplaki, E. and Palyvos, J. A., "On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power correlations," Solar Energy, Vol. 83, 2009, pp. 614-624.

[6]  Zhang, X., Zhao, X., Shen, J., Xu, J. and Yu, X., "Dynamic Performance of a Novel Solar Photovoltaic/Loop-Heat-Pipe Heat Pump System," Applied Energy, Vol. 114, 2014, pp. 335-352.

[7]  Bulut, M. and Sozbir, N., "Analytical Investigation of a Nanosatellite Panel Surface Temperatures for Different Altitudes and Panel Combinations," Applied Thermal Engineering, Vol. 75, 2015, pp. 1076-1083.

[8]  Akbarzadeh, A. and Wadowski, T., "Heat Pipe-based Cooling Systems for Photovoltaic Cells Under Concentrated Solar Radiation," Applied Thermal Engineering, Vol. 16, 1996/01/01/ 1996, pp. 81-87.

[9]   Lee, D. I. and Baek, S. W., "Development of a Heating System Using CPV Technology and Heat Pipes," Environmental Progress & Sustainable Energy, Vol. 34, 2015, pp. 1197-1207.

[10] Doulabi, S., M., Darabi, H., Roshanian, J., "Comparison Between Traditional Method (Statistical Method) and Multidisciplinary Optimization Method (AAO) in Designing of a Lightweight Liquid Propellant LV," in Journal of Space Science and Technology, Vol. 5, No. 1, 2012 (in Persian).

[11] Saghari, A., Veysi, H., Kosari, A. R., "Determine the Optimal Orbit for an Earth Observation Satellite Considering the Power," in Journal of Space Science and Technology, Vol. 9, No. 3, 2012., pp. 27-36 (in Persian).

[12] Mirshams, M., Karimi, H., Naseh, H., "Multi-Stage Liquid Propellant Launch Vehicle Conceptual Design, Based on Combinatorial Optimization of Major Design Parameters," in Journal of Space Science and Technology, Vol. 1, No. 1, 2008 (in Persian).

 [13]        Geem, Z. W. and Hwangbo, H., "Application of harmony search to multi-objective optimization for satellite heat pipe design," in Advances in Space Research, 2006, pp. 111-116.

[14] Deb, K., Multi-objective optimization using evolutionary algorithms: Wiley, 2005.

[15] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, 2002, pp. 182-197.

[16] Konak, A., Coit, D. W., and Smith, A. E., "Multi-Objective Optimization Using Genetic Algorithms: A Tutorial," Reliability Engineering & System Safety, Vol. 91, 2006, pp. 992-1007.

[17] Gu, X., Sun, G., Li, G., Mao, L., and Li, Q., "A Comparative Study on Multiobjective Reliable and Robust Optimization for Crashworthiness Design of Vehicle Structure," Structural and Multidisciplinary Optimization, Vol. 48, 2013, pp. 669-684.

[18] Williams, A. D. and Palo, S. E., "Issues and Implications of the Thermal Control System on the Six Day Spacecraft," Air Force Research Lab Kirtland Afb Nm Space Vehicles Directorate, 2006.

[19] Han, C. Y., You, J. H., Lee, K. H., Kim, H. K., and Lee, S.N., "Sensitivity Analyses of Satellite Propulsion Components with Their Thermal Modelling," Advances in Space Research, Vol. 47, 2011, pp. 466-479.

[20] Dunn, P.D. and Reay, D., Heat pipes: Elsevier, 2012.

[21]         Evans, D. and Florschuetz, L., "Cost Studies on Terrestrial Photovoltaic Power Systems With Sunlight Concentration," Solar Energy, Vol. 19, 1977, pp. 255-262.