تحلیل حساسیت مبتنی بر اَبَرمکعب لاتین پیش‌رونده مطالعه موردی : طراحی بستر کاتالیست هیدرازینی

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری

2 استادیار، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری

3 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

چکیده

در حال حاضر، تعداد نمونه مورد نیاز برای رسیدن به دقت تحلیل حساسیت معین در طراحی، براساس روش­های سعی و خطا در طراحی صورت می­پذیرد. هدف این مقاله، توسعه روشی است برای تعیین تعداد نمونه مورد نیاز براساس معیار مشخص برای رسیدن به دقت تحلیل حساسیت معین می­باشد. لذا در این مقاله، یک روش  تحلیل حساسیت جدید مبتنی بر طرح آزمایشات ابرمکعب لاتین پیش‌رونده و همگرایی نتایج تحلیل ارائه شده است. برای این منظور یک روش نمونه‌برداری ابرمکعب لاتین پیش‌رونده توسعه داده شد. این رویکرد سیستماتیک منجر به تحلیل حساسیت دقیق، کارآمد و سریع در مدل‌های مختلف و با تعداد پارامترهای زیاد و بازه تغییرات بزرگ شده‌است. تحلیل حساسیت روی مدل طراحی بستر کاتالیستی یک رانشگر تک پیش‌رانه هیدرازینی به عنوان مطالعه موردی، انجام شده‌است و نتایج تحلیل حساسیت طراحی بستر کاتالیستی ارزیابی و تحلیل شده است. نتایج این تحقیق نشان می‌دهد که در تحلیل حساسیت مبتنی بر ابرمکعب لاتین پیشرونده با مشخص شدن کمینه جمعیت مورد نیاز برای انجام تحلیل حساسیت با دقت مشخص، هزینه محاسباتی تحلیل‌های مشابه و پیچیدگی‌های طراحی کاهش خواهد یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity analysis based on Progressive LHS Applied to Hydrazine Catalyst Bed Design

نویسندگان [English]

  • mohammad naddafi pour meibody 1
  • Hassan Naseh 2
  • فتح اله امی 3
1 Aerospace Research Institute
2 Assistant Professor - Aerospace Research Institute
چکیده [English]

Now, the required samples to achieve the specific precision of sensitivity analysis in design are performed based on trial and error methods. The purpose of this paper is to develop for determining the number of the required sample to achieve the specific precision of sensitivity analysis. Thus, in this paper, a new sensitivity analysis method is proposed based on the Progressive Latin hypercube Sampling (PLHS) and the convergence of the analysis results. For this purpose, a PLHS method has been developed. This cystic approach has led to a sensitivity analysis of accuracy, efficiency and speed in a variety of models with a large number of large parameters and large changes. Sensitivity analysis has been performed on the design of a hydrazine monopropellant thruster catalyst bed model as a case study. The results of this study indicate that in the sensitivity analysis based on the PLHS, the minimum population required for sensitivity analysis with specified accuracy can be determined. This leads to lower processing costs in the sensitivity analysis process, especially in complex models.

کلیدواژه‌ها [English]

  • Sensitivity analysis
  • Progressive Latin Hypercube Sampling
  • Design of experiments
  • Catalyst Bed
[1] Manlik, O., Lacy, R.C. and Sherwin, W.B. "Applicability and limitations of sensitivity analyses for wildlife management," Journal of Applied Ecology, vol. 55, no. 3, 2018, pp. 1430-1440.
[2] Choi, K.K. and Kim, N.-H. Structural sensitivity analysis and optimization 1: linear systems. Springer Science & Business Media, 2006.
[3] Ohsaki, M., Optimization of finite dimensional structures. CRC Press, 2016.
[4] Hamby, D., "A review of techniques for parameter sensitivity analysis of environmental models," Environmental monitoring and assessment, vol. 32, no. 2, 1994, pp. 135-154.
[5] Yuan, Z., Liang, P., Silva, T., Yu, K. and Mottershead, J.E., "Parameter selection for model updating with global sensitivity analysis," Mechanical Systems and Signal Processing, vol. 115, pp. 483-496, 2019.
[6] Zhou, Y., Lu, Z., Cheng, K. and Yun, W., "A Bayesian Monte Carlo-based method for efficient computation of global sensitivity indices," Mechanical Systems and Signal Processing, vol. 117, 2019, pp. 498-516.
[7] Iooss, B. and Lemaître, P,. "A review on global sensitivity analysis methods," in Uncertainty management in simulation-optimization of complex systems: Springer, 2015, pp. 101-122.
[8] Kala, Z. and Valeš, J., "Global sensitivity analysis of lateral-torsional buckling resistance based on finite element simulations," Engineering Structures, vol. 134, pp. 37-47, 2017.
[9] Yang, H., Wen, J., Wang, S., Li, Y., Tu, J. and Cai, W., "Sobol sensitivity analysis for governing variables in design of a plate-fin heat exchanger with serrated fins," International Journal of Heat and Mass Transfer, vol. 115, 2017, pp. 871-881.
[10] Fatemi, A., Ionel, D. M., Demerdash, N. A., Stretz, S.J. and Jahns, T.M., "RSM-DE-ANN method for sensitivity analysis of active material cost in PM motors," in Energy Conversion Congress and Exposition (ECCE), 2016 IEEE, 2016, pp. 1-7.
[11] Bates, S., Sienz, J. and Toropov, V., "Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm," in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004, p. 2011.
[12] Meibody H., M. N. P. N., Ommi, F., "Adaptive Surrogate Modeling Algorithm for Meta-model Based Design Optimization: A Case Study," Int. J. Industrial and Systems Engineering, 2020.
[13] Eppinger, S.D. and Browning, T.R., Design structure matrix methods and applications. MIT press, 2012.
[14] Naseh, H., Meibody. M.M.N.P., Hosseini Anari, H., Ommi, F.,  "Numerical-parametrical analysis on the hydrogen peroxide catalyst bed for space monopropellant thruster applications," Journal of Applied Research of Chemical-Polymer Engineering, vol. 1, no. 2END, 2018 (In Persian).
[15] Hwang, C.H., Lee, S. N., Baek, S.W., Han, C. Y., Kim, S. K. and Yu, M. J. "Effects of Catalyst Bed Failure on Thermochemical Phenomena for a Hydrazine Monopropellant Thruster Using Ir/Al2O3 Catalysts," Industrial & Engineering Chemistry Research, vol. 51, no. 15, 2012, pp. 5382-5393.
[16] H. M. Ghassemi, M. N.P. ; Asghari, I., "Experimental investigation on Specific velocity of Hydrogenperoxid monopropellant thruster," presented at the The 11 th Iranian Aerospace Society Conference, Tehran, Iran, March 1-3, 2011.
[17] Chen, X. and et al., "A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al 2 O 3," Chemical Communications, no. 3, 2002, pp. 288-289.
[18] Kesten, A., "Analytical study of catalytic reactors for hydrazine decomposition," NASA UARL G 910461, 1968.
[19] Meibody, M., Naseh, H. and Ommi, F., "A kriging based multi objective gray wolf optimization for hydrazine catalyst bed," Engineering Solid Mechanics, vol. 7, no. 3, 2019, pp. 179-192.
[20] Meibody, M.N.P., Naseh, H. and Ommi, F.,  "Progressive Latin Hypercube sampling-based robust design optimisation (PLHS-RDO)," Australian Journal of Mechanical Engineering, 2020, pp. 1-8.