نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه اراک، اراک،ایران

2 گروه مهندسی هوافضا، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

3 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس ، تهران، ایران

چکیده

در این تحقیق، پس­روی سطح انواع گرین­های سه‌بعدی به همراه بالستیک داخلی شبه یک­بعدی موتورهای سوخت جامد با استفاده از تئوری مرز­های متحرک روش مجموعه سطح و بهره‌گیری از روش مقاطع شبیه‌سازی‌شده تا ضمن رسیدن به‌دقت بالا در شبیه­سازی از زمان تحلیل پس­روی گرین­ نیز به‌طور محسوسی کاسته شود. با استفاده از روش مقاطع، گرین­های سه‌بعدی به تعداد زیادی از سطح مقطع­های دوبعدی تبدیل‌شده و سپس با استفاده از تئوری منحنی­های تراز در دو بعد پس­روی گرین مورد بررسی قرارگرفته است. درنهایت با استفاده از روش درون­یابی، سطح سوزش گرین­های سه‌بعدی حاصل می­شود. همچنین برای پیش‌بینی فشار درون موتور و نرخ سوزش مورد­نظر یک کد بالستیک داخلی به‌صورت شبه یک­بعدی نوشته و با کد تحلیل پس‌روی گرین کوپل شده است. پدیدة سوزش فرسایشی نیز پدیده‌ای مهم در موتورهای سوخت جامد، به‌حساب می­آید. در این تحقیق، با در نظر گرفتن سوزش فرسایشی بر اساس مدل سادرهلم، محفظه‌ی احتراق به المان­هایی تقسیم‌بندی می­شود و روابط بالستیک داخلی شبه یک­بعدی برای محاسبه پارامترهایی از قبیل فشار محفظه احتراق، تراست، سطح سوزش، درجه حرارت محفظه، عدد ماخ و ... در هر المان اعمال و حل می‌‌گردد. این روش از نظر نحوه پیاده­سازی و میزان دقت با روش­های تحلیلی و آزمایشگاهی مقایسه شده است که بیانگر دقت بالای روش استفاده‌شده در تحلیل عملکرد موتور‌های سوخت جامد با گرین سه‌بعدی است.

کلیدواژه‌ها

عنوان مقاله [English]

Numerical simulation of complicated grains with 3D burnback and Quasi-One-Dimensional flow field of solid rocket motors

نویسندگان [English]

  • mohammad shahbazi 1
  • mohammad razmjooei 2
  • Fatholah Ommi 3

1 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Arak University, Arak, Iran

2 Department of Aerospace Engineering, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

3 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

چکیده [English]

In this research, the 3D grain burnback with quasi-one-dimensional internal ballistic in a solid rocket motor is simulated using the Level set theory and the utilization of Sections method, while achieving high accuracy in the simulation of green's post-back analysis time can also be significantly reduced. By using Section method, 3D grains are divided to many 2D grain, then 2D Level set is utilized to analyse grain burnback. Finally, the burning port of 3D grains are calculated by means of Interpolation. Also, to predict the internal pressure of the motor and the burning rate, a numerical code is written and coupled with grain burnback programme.

کلیدواژه‌ها [English]

  • Solid rocket motor
  • Numerical simulation
  • 3D grain burnback
  • Level set method
  • Quasi-One-Dimensional
[1]    Heidari, M. R.; Adami, A. H. "General Grain Analysis and Rapid Internal Ballistic Simulation for Solid Motor"; Iranian Scientific Association of Energetic Materials, Vol. 5., No. 2, 2011, pp. 59-72 (In Persian).
[2]    Chorin, A. J. "Flame Advection and Propagation Algorithms";  J. Comput. Phys. Vol. 35, No. 1, 1980, pp. 1-11.
[3]    Osher, S.; Sethian, J. A. "Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations"; J. Comput. phys.,Vol. 79, No. 1, 1988, pp. 12-49.
[4]    Atılgan, T. K.; Tuğrul, T. H.; Haluk, A. M. “Three-Dimensional Internal Ballistic Analysis by Fast Marching Method Applied to Propellant Grain Burn-Back”; 41st AIAA/ASME/SAE/ASEE. Joint. Propul. Conf. Tucson, AZ, USA. 2005.
[5]    H. Karimi, M. Moradi, H. Abtahi." Three-dimensional grain burn-back geometric modeling with quite complex profiles by SolidWork software";in The 6th Conference of Iranian Areospace Society, Tehran, Iran, 2006. (In Persian).
[6]    Willcox, M. A.; Brewster, M. Q.; Tang, K. C.; Stewart, D. S. "Solid Propellant Grain Design and Burnback Simulation Using a Minimum Distance Function"; J. propul. Power. 2007, 23(2), 467-477.
[7]    Yildirim, C.; Aksel, M. H. “Numerical Simulation of the Grain Burnback in Solid Propellant Rocket Motor”; AIAA. Pap. 2005, 4160.
[8]    Qin, F.; Guoqiang, H.; Peijin, L.; Jiang, L. "Algorithm Study on Burning Surface Calculation of Solid Rocket Motor With Complicated Grain Based On Level Set Methods"; 42th AIAA/Am. Soc. Mech. Eng. Soc. Auto. Eng. Soc. Explos. Eng. Joint Propul. Conf. Exh. 2006.
[9]    Favini, B.; Cavallini, E.; Di Giacinto, M.; Serraglia, F. "An Ignition-to-Burn Out Analysis of SRM Internal Ballistic and Performances"; AIAA. Pap. 2008, 5141.
[10]   Toker,K. A.; Alsel, H.; Tinaztepe, T. "3-Dimentional Propellant Grain Burn back Calculation on Tetrahedron Mesh by Fast Marching Method"; AIAA, 2004.
[11]  Moshir Estekhareh, S. G. Numerical simulation of the grain burn-back in solid propellant rocket motor, MS Thesis, Department of Mechanical and Aerospace Engineering, Maleke-ashtar University of Technology, Tehran, 2012 (In Persian).
[12]  Gheisari, M, M., Mirsajedi, S, M.,"Using marching cube algorithm for 3D grain burn-back analysis in Solid Rocket Motors based on level set method";Modares Mechanical Engineering, Vol. 14 No. 15, 2015, pp. 85-95 (In Persian).
[13]   Tshokotsha, M.H.,. Internal ballistic modelling of solid rocket motors using level set methods for simulating grain burnback, (Thesis PhD), Stellenbosch: Stellenbosch University, 2016.
[14]   Pons Lorente, A. Study of grain burnback and performance of solid rockets motors, (Thesis Master), Jet. Propul. 2013, pp. 8-10.
[15]   Cavallini, E,. Modeling and numerical simulation of solid rocket motors internal ballistics, 2010.
[16]   Summerfield, M. Solid Propellant Rocket Research, Princeton University: Prinncton, New Jersey. 1960, pp. 207-227.
[17]   Zucrow, M.J. and Hoffman, J.D., Gas Dynamics: Volume2-Multidimensional Flow, John Wiley & Sons, Inc., New York. 1977, p. 488.
[18]   Hoffman, Z., "Gas Dynamics Volume I J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno congestion avoidance and control,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep,1999, pp. 99-02.
[19]    Kays Morrow, W., Convective heat and mass transfer, Tata McGraw-Hill Education, 2012.
[20]    Heidari, M, R,. Adami, A, H,. “Specific Grain Analysis and Rapid Internal Ballistic Simulation for Solid Motor”; Journal of Space Science & Technology, 2012, pp. 67-80 (In Persian).
[21]   ThiokoVhuntsvill, A. L. "Application of the Saderholm Erosive Burning Model to Nozzleless Solid Propellant Rocket Motors", 1984, 35807
[22]   Willcox, M. L.; Brewster, M. Q.; Tang, K. C.; Stewart, D. S. and Kuznetsov, I. R. "Solid Rocket Motor Internal Ballistics Simulation Using Three Dimensional Grain Burn Back"; J. Propul. Power. May-June 2007, pp. 575-584.
[23]   Sutton; George, P., Babilarz, O., Rocket Propulsion Elements, John & Sons, 2017, pp. 165-167.
[24]   Cavallini, E. Modeling and Numerical Simulation of Solid Rocket Motors Internal Ballistics; (Thesis PhD), 2010, pp. 37-43.
[25]   Parsa, R, E,. Mirsajedi, S. M., "Effects of Erosive Burning on Solid Rocket Motor Internal Ballistics"; Journal of Space Science & Technology, 2012, pp. 69-74 (In Persian).
[26]   Konert, M. Vandenberghf, J. F. “Comparison of Laser Grain Size Analysis with Pipette and Sieve Analysis: a Solution for the Underestimation of the Clay Fraction,” Sedimentology, Vol. 44, No. 31, 1997, pp. 523-535.‏
[27] Cavallini, E.; Favini. B.; Giacinto, M. Di. “Internal Ballistics Simulation of a NAWC Tactical SRM.,” J. Appl. Mech, Vol. 78, 2011, pp. 1005-1018.