Space systems design (spacecraft, satellites, space stations and their equipment)
Ramin Kamali Moghadam; Mohamad Taeibi; Salar Heyat Davoudian; Reinhard Miller
Volume 15, English Special Issue , May 2022, , Pages 25-33
Abstract
Superhydrophobic coatings can be made by creating a micro-sized structure on a surface providing super-repellent properties which has many applications in aerospace, defense, automotive, biomedical and engineering. Numerical simulation of drop dynamics and motion on a superhydrophobic surface helps us ...
Read More
Superhydrophobic coatings can be made by creating a micro-sized structure on a surface providing super-repellent properties which has many applications in aerospace, defense, automotive, biomedical and engineering. Numerical simulation of drop dynamics and motion on a superhydrophobic surface helps us understand control and building surface textures and find optimum micro structured coatings of maximum hydrophobicity. In the present work, the dynamics of drops on superhydrophobic inclined micro-structured surfaces is studied, using a finite element method. Effect of microstructures on droplet behavior on a superhydrophobic surface is investigated using different microstructures. The governing equations and important dimensionless numbers are described and a numerical algorithm is introduced. The validation of the numerical algorithm is performed by simulation of drop motion attached to an inclined surface. In addition, droplet movement on the micro structured surface is numerically simulated on smooth and microstructure surfaces in the same conditions. Comparison of the results shows the effect of microstructure coating on the surface hydrophobicity properties.