نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در تحقیق حاضر، عملکرد عملگرهای مومنتوم سیالی در مدیریت دمایی ماهواره براساس دو چیدمان پیشنهادی هرمی و سه محوره مورد بررسی قرار گرفته است. به این منظور دمای دیواره‌های ماهواره با حضور عملگرها و بدون عملگرها در یک دور چرخش مداری ماهواره مورد بررسی قرار گرفته و نتایج با یکدیگر مقایسه شده‌اند. برای عملگرهای مومنتوم سیالی که به صورت یک حلقه بسته هستند از قاب مرجع چرخان استفاده شده و جریان سیال در داخل عملگرها آرام در نظر گرفته شده است. میزان تاثیر سرعت دورانی سیال در داخل عملگرها بر دمای دیواره‌های ماهواره تحت دو سرعت دورانی مختلف بررسی و شار گرمایی وابسته به زمان بر دیواره‌ها استخراج شده است. نتایج بیانگر این است که در چیدمان هرمی، کاهش دمای سطوح دیواره ماهواره متاثر از دو پارامتر سرعت دورانی سیال و میزان چرخش مداری ماهواره بوده، اما در شرایط بحرانی، چیدمان سه محوره سریعتر می‌تواند این مدیریت دمایی را انجام دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Performance Analysis of FMC Actuators to Microsatellite Temperature Management Based on 3-Axis and Pyramidal Configuration

نویسندگان [English]

  • Mehran Nosratollahi
  • Ahmad Soleimani

Aerospace University Complex,و Malek Ashtar university, Tehran, IRAN

چکیده [English]

In this paper, the performance of fluid momentum controller (FMC) actuators in satellite temperature management is investigated based on two pyramidal and 3-axis proposed configurations. In this regard, the temperature of different satellite surfaces with fluid actuators and without actuators in an orbital period of satellite is investigated and the results are compared to each other. For FMC actuators that are closed as a loop, a Moving Reference Frame (MRF) is used and the flow inside the actuators is laminar. The effect of fluid angular velocity of actuators on the temperature of satellite surfaces with two different angular velocity has been investigated and time-dependent heat flux is applied to the satellite surfaces. The results indicate that in the pyramidal configuration, the decrease in the temperature of the satellite wall surfaces is influenced by two parameters: fluid angular velocity and orbital period of satellite, but in the critical conditions, the 3-axis configuration can carry out this temperature management more quickly.

کلیدواژه‌ها [English]

  • FMC Actuator
  • Numerical Simulation
  • Pyramidal and 3-Axis Configuration
  • Temperature Management
  • Fluid Angular Velocity
  • SIMPLE Method
[1]  Maynard, R.S., Fluid Momentum Control, U.S. Patent, 4,776,541, 1998.
[2]  Lurie, B.J. and J.A. Schier, “Liquid-ring Attitude-control System For Spacecraft, ” NASA Tech Briefs, Vol. 14, No. 9, 1990.
[3]  Laughlin, D.R., Sebesta, H.R., Ckelkamp-Baker, D.E., “A Dual Function Magnetohydrodynamic (MHD) Device for Angular Motion Measurement and Control, ” Advances in the Astronautical Sciences, Vol. 111, 2002, pp. 335-348.
[4]  Kelly, A.C., Mc Chesney, C., Smith, P.Z., Waltena, S., “A Performance Test of a Fluidic Momentum Controller in Three Axes,” NASA Report, 2004.
[5]  Tsuyuki, G. and Thunnissen, D., “Margin Determination in the Design and Development of a Thermal Control System,” SAE Technical Paper, 2004-01-2416, 2004.
[6]  Kumar, K.D., “Satellite Attitude Stabilization Using Fluid Rings, ” Acta Mechanica, Vol. 208, No. 2, 2009, pp. 117–131.
[7]  Corey Bolduc Chahe, A., “Rapid Thermal Analysis of Rigid Three-Dimensional Bodies With the Use of Modelica Physical Modelling Language,” MSDL 2009 Summer Presentations for Canadian Space Agency, Department of Space Technologies, Quebec, Canada, 2009.
[8]  Varatharajoo, R., Kahle, R. and Fasoulas, S., “Approach for Combining Spacecraft Attitude and Thermal Control Systems,” Journal of Spacecraft and Rocket, Vol. 40, No. 5, 2003 , pp. 57-664.
[9]  Cheng, W., LiuZhi, N., ZhongAiMing, L., ZhiMin, W., ZongBo He, Z., “Application Study of A Correction Method for A Spacecraft Thermal Model With A Monte-Carlo Hybrid Algorithm,” Chinese Science Bulletin, Vol. 56, No. 13, 201,  pp. 1407-1412.
[10]  Jose, G. and Fernandez-Rico, G., “Linear Approach to the Orbiting Spacecraft Thermal Problem,” Journal of Thermophysics and Heat Transfer, Vol. 26, No. 3, 2012, pp. 511-522.
[11]  Nobari, N.A. and Misra, A.K., “Satellite Attitude Stabilization Using Four Fluid Rings in a Pyramidal Configuration,” AIAA/AAS Astrodynamics Specialist Conference, Toronto, Canada, 2010.
[12]  Nobari, N.A. and Misra, A.K., “Attitude Dynamics and Control of Satellites With Fluid Ring Actuators, ” Journal of Guidance, Control and Dynamics, Vol. 35, No. 6, Nov-Dec 2012, pp. 1855-1864.
[13]  Nobari, N.A. and Misra, A.K., Attitude Dynamics and Control of Satellite with Fluid Ring Actuators,  PhD Thesis, Department of Mechanical Engineering, McGill University, Canada, 2013.
[14]  Taghavi, A.H., Soleymani, A., Shojaee, T., “Attitude Control System Design Based on Fluidic Momentum Controllers under Adaptive Sliding Mode,” Journal of Space Science and Technology, Vol. 7, No. 2, 2014, pp. 63-74 (In persian).
[15]  Tayebi, J. and Soleymani, A., “A comparative Study of CMG and FMC Actuators for Nano Satellite Attitude Control System-Pyramidal Configuration,” IEEE 7th International Conference on Recent Advances in Space Technologies (RAST), 16-19 June 2015, Istanbol, Turkey.
[16]   Nosratollahi, M., Soleymani, A., Sadati, S.H., “Design of Satellite’s Combined Attitude and Thermal Control System Equipped with FMC Actuators,” Modares Mechanical Engineering, Vol. 18, No. 1, 2018, pp. 122-130 (In persian).
[17]   Nosratollahi, M., Soleymani, A., Sadati, S.H., “Modified L1 Adaptive Control Design for Satellite FMC Systems with Actuators Time Delay,” International Journal of Engineering, Transactions B: Applications,  Vol.31, No. 11, 2018, pp. 1982-1990.
[18]   Nosratollahi, M., Soleymani, A., Sadati, S.H., “Decision-Making System Design for Satellite Temperature Management in the Presence of Fluid Momentum Controller Actuators Fault,” Modares Mechanical Engineering, Vol. 19, No. 4, 2019, pp. 947-957 (In persian).
[19]   Struble, C., Bascaran, E., Bannerot, R.B., Mistree, F., “Compromise: a Multiobjective Hierarchical Approach to the Design of Spacecraft Thermal Control Systems,” ASME Computers in Engineering Conference, Anaheim, CA, USA, July 30-Augest 3, 1989.
[20]   White, F., M., Fluid Mechanics, 4th Ed, McGraw-Hill, 2001.
[21]   Teal Sheet Series: International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, The Aluminum Association, Inc, Revised: January 2015.
[22]   Batchelor, G. K.. An Introduction to Fluid Dynamics, CambridgeUniv.Press, Cambridge, England,  1967.
Rao, A.V., Dynamics of Particles and Rigid Bodies: A Systematic Approach, Cambridge University Press, Cambridge, England, 2006.