نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی نقشه برداری و ژئوماتیک، دانشکده فنی، دانشگاه تهران، تهران، ایران

2 مربی، دانشکده مهندسی نقشه برداری و ژئوماتیک، دانشکده فنی، دانشگاه تهران، تهران، ایران

3 دانشیار، دانشکده مهندسی نقشه برداری و ژئوماتیک، دانشکده فنی، دانشگاه تهران، تهران، ایران

چکیده

تغییرات شدید مکانی و زمانی ضرایب شکست تر باعث شده است تا نتوان مدل تجربی دقیقی برای نشان دادن توزیع این پارامتر به‌دست آورد. معمولا از داده‌های ایستگاه‌های رادیوسوند برای به‌دست آوردن پارامتر اتمسفری در لایه‌های مختلف جوی استفاده می‌شود، اما فواصل مکانی ایستگاه‌های رادیوسوند زیاد و توزیع آن‌ها کم است و این مسئله باعث شده است تا مدل‌های عددی دقت کافی در ارایه پارامترهای اتمسفری نداشته باشند. امروزه با استفاده از مشاهدات تأخیر تروپوسفری تر حاصل از ماهواره‌های تعیین موقعیت جهانی و کمک‌گرفتن از روش توموگرافی می‌توان توزیع ضرایب شکست تر را به‌دست آورد. در این تحقیق از مدل تابعی سه‌بعدی و چهاربعدی برای نمایش توزیع ضرایب شکست تر استفاده شده است. برای این منظور از توابع هارمونیک‌های کلاه‌کروی برای نمایش توزیع ضرایب شکست تر در دو بعد افقی, و همچنین از توابع متعامد تجربی برای نمایش ضرایب شکست تر در راستای ارتفاعی استفاده شده است. علاوه بر این، برای نمایش ضرایب شکست تر در زمان، از توابع پایه فوریه بهره گرفته شده است. منطقه مورد مطالعه در غرب ایالت کالیفرنیا آمریکا درنظر گرفته شده است و از مشاهدات تأخیر تروپوسفری تر اتمسفری حاصل از ماهواره‌های تعیین موقعیت جهانی برای روش توموگرافی استفاده شده است. برای ارزیابی نتایج، ضرایب شکست تر حاصل از روش‌های سه‌بعدی و چهاربعدی با داده‌های ایستگاه رادیوسوند موجود در منطقه مطالعاتی مقایسه شد. نتایج نشان می‌دهند که مقدار RMSE حاصل از مدل تابعی در حدود 4/2 تا 9/3 بر حسب ppm است. همچنین نتایج حاکی از برتری روش‌ چهاربعدی نسبت به سه‌بعدی در بازیابی ضرایب شکست تر اتمسفر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The retrieval of wet refractivity index by tomography using spherical cap harmonics

نویسندگان [English]

  • Masood Dehvari 1
  • Saeed Farzaneh 2
  • Mohammad Ali Sharifi 3

1 M.SC. School of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

2 Educator, School of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

3 Associate Porfessor, School of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran,, Tehran, Iran

چکیده [English]

In this research, three-dimensional and four-dimensional tomography is used to demonstrate the distribution of wet refractivity index of the troposphere. In this model, spherical cap harmonics are used for the horizontal distribution of the wet refractivity index, and empirical orthogonal functions are used for the vertical distribution of the index. The region of study is in the west California State, and the wet refractivity index is retrieved from the wet tropospheric delay measurements. to validate the results, radiosonde profiles were compared to the tomographically retrieved profiles. The result shows that wet refractivity indices can be retrieved using functional models with RMSE about 2.4 ppm till 3.9 in four-dimension method. The comparisons show that the four-dimensional retrieved profiles shows improvement up to 34 and 42 percentage in mid-day tomography epochs compare to three-dimensional tomography results. Also it can be seen that in mid-night epochs three-dimensional tomography has higher accuracy compare to four-dimension method because of low variation of wet refractivity indices

کلیدواژه‌ها [English]

  • Empirical orthogonal functions
  • Legendre function
  • radiosonde
  • numerical weather model
  • tropospheric wet delay
[1]    M. M. Alizadeh Elizei, "Multi-dimensional modeling of the ionospheric parameters, using space geodetic techniques," 2013.
[2]    M. Bender, G. Dick, M. Ge, Z. Deng, J. Wickert, H.-G. Kahle, et al., "Development of a GNSS water vapour tomography system using algebraic reconstruction techniques," Advances in Space Research, vol. 47, pp. 1704-1720, 2011.
[3]    M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, "GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system," Journal of Geophysical Research: Atmospheres, vol. 97, pp. 15787-15801, 1992.
[4]    J. Saastamoinen, "Atmospheric correction for the troposphere and stratosphere in radio ranging satellites," The use of artificial satellites for geodesy, vol. 15, pp. 247-251, 1972.
[5]    H. Hopfield, "Two‐quartic tropospheric refractivity profile for correcting satellite data," Journal of Geophysical research, vol. 74, pp. 4487-4499, 1969.
[6]    J. S. Subirana, M. Hernandez-Pajares, and J. e. M. J. Zornoza, GNSS Data Processing: Fundamentals and Algorithms: European Space Agency, 2013.
[7]    M. Bender and G. Dick, "GNSS water vapor tomography," in Springer Handbook of Atmospheric Measurements, ed: Springer, 2021, pp. 1025-1049.
[8]    P. Tregoning, R. Boers, D. O'Brien, and M. Hendy, "Accuracy of absolute precipitable water vapor estimates from GPS observations," Journal of geophysical research: atmospheres, vol. 103, pp. 28701-28710, 1998.
[9]    A. Flores, G. Ruffini, and A. Rius, "4D tropospheric tomography using GPS slant wet delays," in Annales geophysicae, 2000, pp. 223-234.
[10]  K. Hirahara, "Local GPS tropospheric tomography," Earth, planets and space, vol. 52, pp. 935-939, 2000.
[11]  T. Nilsson and L. Gradinarsky, "Water vapor tomography using GPS phase observations: simulation results," IEEE Transactions on Geoscience and remote sensing, vol. 44, pp. 2927-2941, 2006.
[12]  N. Ding, S. Zhang, and Q. Zhang, "New parameterized model for GPS water vapor tomography," in Annales Geophysicae, 2017, pp. 311-323.
[13]  P. Xia, C. Cai, and Z. Liu, "GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles," in Annales Geophysicae, 2013, pp. 1805-1815.
[14]  G. Haines, "Spherical cap harmonic analysis," Journal of Geophysical Research: Solid Earth, vol. 90, pp. 2583-2591, 1985.
[15]  Z. Liu, Ionosphere tomographic modeling and applications using Global Positioning System (GPS) measurements: university of Calgary, 2004.
[16]  O. J. S. AL-FANEK, "Ionospheric imaging for Canadian polar regions," 2013.
[17]  S. Farzaneh and E. Forootan, "Reconstructing regional ionospheric electron density: a combined spherical Slepian function and empirical orthogonal function approach," Surveys in geophysics, vol. 39, pp. 289-309, 2018.
[18]  M. Schmidt, D. Dettmering, M. Mößmer, Y. Wang, and J. Zhang, "Comparison of spherical harmonic and B spline models for the vertical total electron content," Radio Science, vol. 46, pp. 1-8, 2011.
[19]  D. Perler, A. Geiger, and F. Hurter, "4D GPS water vapor tomography: new parameterized approaches," Journal of Geodesy, vol. 85, pp. 539-550, 2011.
[20]  P. C. Hansen, "The discrete Picard condition for discrete ill-posed problems," BIT Numerical Mathematics, vol. 30, pp. 658-672, 1990.
[21]  H. Björnsson and S. Venegas, "A manual for EOF and SVD analyses of climatic data," CCGCR Report, vol. 97, pp. 112-134, 1997