Document Type : Research Paper

Authors

1 School of Surveying and Geospatial Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

2 Professor, School of Surveying and Geospatial Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

3 GNSS Research Centre, Department of Spatial Sciences, Curtin University of Technology, Perth, Australia

Abstract

In this paper, we discussed standard point positioning technique based on the single frequency code-based (C/A) receivers. Then, we presented its performance by means of different measures. However, the use of one single frequency GPS receiver to obtain high-precision positioning make a major challenge due to the environmental biases, in particular the ionospheric effects are handled. The main objective of the present study is to integrate a inospheric model such as Klobuchar Inospheric Model (KIM) with imprecise code (C/A) observations under intense geomagnetic storm conditions, then, to obtain dm level positioning accuracy using Kalman filter. For this purpose we used code (C/A) observations on two different days (February 26, 2018 and December 20, 2015) at Tehran station. The results show that we could obtain multi-dm level positioning accuracy under geomagnetic storm condition by using Kalman filter that will be important in the field of kinematic applications.

Keywords

Main Subjects

1. ‎ Bogatin‎‎‎, K. Foppe, P. Wasmeier, T. A. Wunderich, T. Sch‎‎a‎fer and D. Kogoj, “‎Evaluation ‎of ‎linear ‎‎Kalman ‎filter ‎processing ‎geodetic ‎kinematic measurements”‎‎‎, ‎Measurement, vol. ‎41‎‎, pp. ‎561‎--‎578, ‎2008.‎‎‎
2. L. Choy, ‎“‎An investigation into the accuracy of single frequency precise point positioning," Ph.D. thesis, RMIT University, Australia, 2009.
3. V. Demyanov,‎ X. Zhang and‎ X.‎ ‎Lu,‎ ‎“‎Moderate geomagnetic storm condition, WAAS Alerts and real GPS positioning ‎quality‎‎‎,” Journal of Atmospheric Science Research‎‎, vol. 2, no. 1, pp. 10-23, 2019.
4. ‎‎‎ Gamse‎‎‎‎, ‎F. ‎Nobakht-Ersi and M.A‎. Sharifi, “‎Statistical process control of a Kalman filter model”‎‎, Sensors‎‎, ‎vol. 14‎‎‎, ‎no.10, 18053–18074, 2014.‎
5. Gao and X. Shen, “A new method for carrier phase based precise point positioning navigation”, Journal of the Institute of Navigation, vol. 49m no. 2, pp.109-116, 2002.
6. Hofmann-Wellenhof, H. Lichtenegger and E. Wasle, GNSS Global Navigation Satellite Systems: GPS, Glonass, Galileo & More, Springer Wien, New York, 501 p, 2008.
7. J.A‎. Klobuchar‎, ‎ ‎‎"Ionospheric time-delay algorithm for single-frequency GPS users‎," IEEE Transactions on Aerospace and Electronic Systems, vol. AES. 23, no. 3, pp. 325-331‎, 1987‎.
8. W‎. Liu‎, ‎ “Positioning performance of single frequency GNSS receivers using Australian regional ionospheric corrections”, MSc‎. ‎Thesis, Queensland Univ‎. ‎of Technology‎, ‎2016‎. ‎
9. ‎D‎. Odijk‎, Fast precise GPS positioning in the presence ofionospheric delays, ‎Publications on geodesy‎, ‎52‎, ‎Netherlands Geodetic Commission‎, ‎Delft‎, ‎The Netherlands‎, ‎2002‎.
10. S.‎ Subirana‎, ‎J.M.J. Zornoza ‎and M. Hernandez-Pajares‎, ‎ESA_GNSS data processing, Vol‎. ‎I‎: ‎Fundamentals and Algorithms, ESA Communications‎, ‎The Netherlands‎, ‎2013‎.
11. J.G. Teunissen, and A. Kleusberg, GPS for geodesy, 2nd edition, Springer-Verlag, 1998.
12. X‎. Yu‎‎ ‎and ‎ J‎‎. Gao‎, ‎ “‎Kinematic precise point positioning using multi-constellation global navigation satellite system (GNSS) observations”‎‎, ISPRS Int.‎ ‎Geo-Inf‎‎, ‎vol.6‎, no. ‎6‎, ‎‎‎ ‎2017‎‎.‎
13. F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins and F.H. Webb, “Precise point positioning for the efficient and robust analysis of GPS data from large networks”, Journal of Geophysical Research, 102, Issue B3, pp.5005-5017,1997.
14. Available, [on line]: http://cddis.nasa.gov/gnss/data
15. Available, [on line]: https://cdaweb.sci.gscf.nasa.gov/
16. Available, [on line]: http://wdc.kugi.kyotou.ac.jp/ dstdir/