نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

در این مقاله، مسئله کنترل توامان وضعیت و موقعیت نسبی فضاپیما درحضور عیب عملگر، مورد بررسی قرار گرفته است. پس از تبیین ضعف و محدودیت مدل‌های موجود و رویکردهای کنترلی مبتنی بر آن‌ها، صورت‌بندی جدیدی از حرکت نسبی فضاپیما ارائه گردیده است. آن‌گاه چارچوب کنترل پیش‌بین زیرفضاپایه، که یک رویکرد بدون مدل قدرتمند است، در ابعاد چندی گسترش داده شده است، که عبارتند از کنترل تطبیقی غیرخطی، تحمل‌پذیری نسبت به عیوب ناگهانی و تخصیص کنترل. بر اساس این چارچوب تعمیم یافته، سه کنترل‌کننده داده محور تحمل‌پذیر عیب مجزا برای کنترل فرآیندهای جفت‌شده، غیرخطی و متغیر با زمان، توسعه داده شده است. از منظر تشخیص عیب، تنها الزام ساختار کنترلی ارائه شده، آشکارسازی زمان وقوع عیوب است. به‌علاوه، یک قابلیت درونی تشخیص عیب داده محور معرفی گردیده است که ساختار کنترلی را کاملاً خودبسنده خواهد نمود. کنترل‌کننده‌های سه‌گانه، سپس برای حل مسئله پیش‌گفته طراحی گردیده اند و کارایی آن‌ها از طریق یک سناریوی شبیه‌سازی چندبعدی، صحه‌گذاری گردیده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Model-Free Predictive Fault-Tolerant Control for Spacecraft Roto-Translational Relative Motion

نویسندگان [English]

  • Mohammad Chiniforoushan 1
  • Mahdi Mortazavi 2
  • kamran raissi 1

1 Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

2 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

چکیده [English]

The problem of jointly controlling relative attitude and position of spacecraft in the presence of actuator fault is investigated in this paper. Following a description about drawbacks and limitations of the existing models and the control approaches based on them, a new formulation of the spacecraft relative motion is provided. Subsequently, the subspace predictive control framework, which is a powerful model-free approach, is extended in several dimensions, that is, adaptive nonlinear control, tolerance against abrupt faults and control allocation. Based on this generalized framework, three distinct data-driven fault-tolerant controllers for coupled, nonlinear and time-variant plants are developed. From the viewpoint of fault diagnosis, the only requirement of the control structure is to detect the occurrence time of faults. Furthermore, an internal data-driven fault diagnosis capability is introduced, which makes the control structure completely self-sufficient. The three controllers are then designed to solve the aforementioned problem, and their efficiency are verified via a multidimensional simulation scenario.

کلیدواژه‌ها [English]

  • Spacecraft 6-DOF relative motion
  • Model-free control
  • Subspace predictive control
  • nonlinear control
  • Fault-tolerant control
  • Control allocation
  • Data-driven fault diagnosis
[1] L. Sun, W. Huo and Z. Jiao, "Disturbance-Observer-Based Robust Relative Pose Control for Spacecraft Rendezvous and Proximity Operations Under Input Saturation," IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1605-1617, Aug. 2018.
[2] P. C. Calhoun, A.-M. Novo-Gradac and N. Shah, "Spacecraft alignment determination and control for dual spacecraft precision formation flying," Acta Astronautica, vol. 153, pp. 349-356, December 2018.
[3] B. Shasti, A. Alasty and N. Assadian, "Robust distributed control of spacecraft formation flying with adaptive network topology," Acta Astronautica, vol. 136, pp. 281-296, 2017.
[4] F. Zhang and G. Duan, "Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment," IET Control Theory and Applications , vol. 6, no. 9, pp. 1192-1204, 2012.
[5] "Adaptive Fixed-Time Six-DOF Tracking Control for Noncooperative Spacecraft Fly-Around Mission," IEEE Transactions on Control Systems Technology , vol. 27, no. 4, pp. 1796-1804, July 2019.
[6] V. Muralidharan and M. R. Emami, "Concurrent rendezvous control of underactuated spacecraft," Acta Astronautica, vol. 138, pp. 28-42, September 2017.
[7] R. Sun, J. Wang, D. Zhang, Q. Jia and X. Shao, "Roto-Translational Spacecraft Formation Control Using Aerodynamic Forces," Journal of Guidance, Control, and Dynamics, vol. 40, no. 10, pp. 2556-2568, 2017.
[8] H. Dong, Q. Hu and M. R. Akella, "Dual-Quaternion-Based Spacecraft Autonomous Rendezvous and Docking Under Six-Degree-of-Freedom Motion Constraints," Journal of Guidance, Control, and Dynamics, vol. 41, no. 5, pp. 1150-1162, 2017.
[9] Y. Yang, "Coupled orbital and attitude control in spacecraft rendezvous and soft docking," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, pp. 1 - 11, 2018.
[10] M. Tavakoli and N. Assadian, "Actuator failure-tolerant control of an all-thruster satellite in coupled translational and rotational motion using neural networks," International Journal of Adaptive Control and Signal Processing, pp. 1-16, 2018.
[11] M. Leomanni, A. Garulli, A. Giannitrapani, F. Farina and F. Scortecci, "Minimum Switching Thruster Control for Spacecraft Precision Pointing," IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 2, pp. 683-697, April 2017.
[12] B. Jiang, Q. Hu and M. I. Friswell, "Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness," IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 4, pp. 1576-1586, August 2016.
[13] F. Curti, M. Romano and R. Bevilacqua, "Lyapunov-Based Thrusters’ Selection for Spacecraft Control: Analysis and Experimentation," Journal of Guidance, Control, and Dynamics, vol. 33, no. 4, pp. 1143-1160, 2010.
[14] P. A. Servidia and R. S. Peña, "Spacecraft Thruster Control Allocation Problems," IEEE Transactions on Automatic Control, vol. 50, no. 2, pp. 245-249, 2005.
[15] D. Bustan, S. K. HosseiniSani and N. Pariz, "Nonlinear Dynamic Inversion Fault Tolerant Control for Spacecraft," Journal of Space Science & Technology , vol. 8, no. 2, pp. 11 - 17, 2015.
[16] S. Yin, B. Xiao, S. X. Ding and D. Zhou, "A Review on Recent Development of Spacecraft Attitude Fault Tolerant Control System," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3311-3320, May 2016.
[17] Q. Shen, C. Yue, C. H. Goh and D. Wang, "Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3763-3772, May 2019.
[18] Q. Hu, X. Shao and L. Guo, "Adaptive Fault-Tolerant Attitude Tracking Control of Spacecraft With Prescribed Performance," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 331-341, Feb. 2018.
[19] H. Gui and A. H. J. d. Ruiter, "Adaptive Fault-Tolerant Spacecraft Pose Tracking With Control Allocation," IEEE Transactions on Control Systems Technology, vol. 27, no. 2, pp. 479-494, March 2019.
[20] Q. Hu, X. Shao and W.-H. Chen, "Robust Fault-Tolerant Tracking Control for Spacecraft Proximity Operations Using Time-Varying Sliding Mode," IEEE Transactions on Aerospace and Electronic Systems , vol. 54, no. 1, pp. 2-17, Feb. 2018 .
[21] F. T. Hervi and A. Novinzadeh, "Designing Spacecraft Attitude Control Using Model-free Optimal Control Theory," Journal of Space Science & Technology, vol. 10, no. 3, pp. 41 - 57, 2017.
[22] W. Favoreel, B. De Moor and M. Gevers, "SPC: Subspace Predictive Control," in Proceedings of IFAC World Congress, Beijing, China, 1999.
[23] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.
[24] A. Chiuso, "The role of vector autoregressive modeling in predictor-based subspace identification," Automatica, vol. 43, no. 6, pp. 1034-1048, 2007.
[25] R. Kadali, B. Huang and A. Rossiter, "A data driven subspace approach to predictive controller design," Control Engineering Practice, vol. 11, pp. 261-278, 2003.
[26] Z. Li and G.-H. Yang, "Integrated Design of Event-triggered Closed-loop Subspace Predictive Control Scheme," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 80-88, 2018.
[27] S. Sedghizadeh and S. Beheshti, "Particle swarm optimization based fuzzy gain scheduled subspace predictive control," Engineering Applications of Artificial Intelligence, vol. 67, pp. 331-344, 2018.
[28] C. Jia, S. Rohani and A. Jutan, "FCC unit modeling, identification and model predictive control, a simulation study," Chemical Engineering and Processing, vol. 42, pp. 311-325, 2003.
[29] I.-H. Song, S.-B. Lee, H.-K. Rhee and M. Mazzotti, "Identification and predictive control of a simulated moving bed process: Purity control," Chemical Engineering Science, vol. 61, pp. 1973-1986, 2006.
[30] H. Balini, I. Houtzager, J. Witte and C. W. Scherer, "Subspace identification and robust control of an AMB system," in Proceedings of American Control Conference, Marriott Waterfront, Baltimore, MD, USA, June 30-July 02, 2010.
[31] R. Dunia, G. T. Rochelle and S. J. Qin, "Modeling CO2 Recovery for Optimal Dynamic Operations," in Proceedings of IEEE Conference on Decision and Control, Orlando, FL, USA, December 12-15, 2011.
[32] X. Wu, J. Shen, Y. Li and K. Y. Lee, "Data-Driven Modeling and Predictive Control for Boiler–Turbine Unit," IEEE Transactions on Energy Conversion, vol. 28, no. 3, pp. 470-481, September 2013.
[33] R. Hallouzi and M. Verhaegen, "Fault-Tolerant Subspace Predictive Control Applied to a Boeing 747 Model," Journal of Guidance, Control, and Dynamics, vol. 31, no. 4, pp. 873-883, 2008.
[34] R. Hallouzi and M. Verhaegen, "Subspace Predictive Control Applied to Fault-Tolerant Control," in Fault Tolerant Flight Control, A Benchmark Challenge, Berlin, Springer, 2010, pp. 293-317.
[35] G. J. V. D. Veen, Identification of wind energy systems, PhD. thesis, Delft University of Technology, 2013.
[36] L. Zhang, S. Z. Xu and H. T. Zhao, "Adaptive Subspace Predictive Control with Time-varying Forgetting Factor," International Journal of Automation and Computing, vol. 11, no. 2, pp. 205-209, April, 2014.
[37] J. Jiang and X. Yu, "Fault-tolerant control systems: A comparative study between active and passive approaches," Annual Reviews in Control, vol. 36, pp. 60-72, 2012.
[38] D. A. Vallado, Fundamentals of Astrodynamics and Applications, Fourth Edition, Hawthorne, CA: Microcosm Press, 2013.
[39] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control, New York: Springer, 2014.
[40] K. T. Alfriend, S. R. Vadali, P. Gurfil, J. P. How and L. S. Breger, Spacecraft Formation Flying - Dynamics, control and navigation, Butterworth-Heinemann, Elsevier, 2010.
[41] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems, Reston, VA: AIAA Education Series, 2003.
[42] M. Navabi and M. Barati, "Dynamics Modeling of Spacecraft Formation Flying and Evaluating the Models Accuracy under the Effects of Relative Distance, Eccentricity and Earth Gravitational Perturbation," Journal of Space Science & Technology, vol. 5, no. 1, pp. 51 - 59, 2012.
[43] M. Navabi and M. R. Akhlomadi, "Nonlinear Optimal Control of Space Docking and Rendezvous Problem," Journal of Space Science & Technology , vol. 8, no. 3, pp. 27 - 40, 2015.
[44] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control; Theory and Applications, Springer, 2008.
[45] C. Duan, S. Zhang, Y. Zhao and X. Kong, "Robust Control Allocation among Overactuated Spacecraft Thrusters under Ellipsoidal Uncertainty," Abstract and Applied Analysis, 2014.
[46] S. Simani, C. Fantuzzi and R. J. Patton, Model-based fault diagnosis in dynamic systems using identification techniques, Berlin: Springer, 2002.
[47] O. Nelles, Nonlinear System Identification - From Classical Approaches to Neural Networks and Fuzzy Models, Springer, 2001.
[48] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis For Dynamic Systems, Kluwer Academic Publishers , 1999.
[49] Y. Zhang and J. Jiang, "Bibliographical review on reconfigurable fault-tolerant control systems," Annual Reviews in Control, vol. 32, pp. 229-252, 2008.
[50] R. J. Patton, F. J. Uppal, S. Simani and B. Polle, "Robust FDI applied to thruster faults of a satellite system," Control Engineering Practice, vol. 18, pp. 1093-1109, 2010.
[51] W. Li, H. Raghavan and S. Shah, "Subspace identification of continuous time models for process fault detection and isolation," Journal of Process Control, vol. 13, no. 5, pp. 407-421, 2003.