نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 کارشناسی ارشد، گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

چکیده

آتروفی عضلانی از جمله مشکلاتی است که فضانوردان پس از بازگشت به زمین با آن مواجه هستند. پروتئین میوستاتین به عنوان یک مهار کننده رشد عضلات شناخته شده است. هدف این مطالعه بررسی تاثیر شرایط میکروگراویتی شبیه سازی شده بر بقای سلول‌های میوتوب‌ موش (C2C12) و بیان ژن میوستاتین بود. مطالعات مورفولوژیک و آزمون MTT تاثیر اندک 48 ساعت قرارگیری در شرایط میکروگراویتی بر رشد سلولی و 40% کاهش رشد سلولی (p<0.05) پس از 72 ساعت را نشان داد. نتایج حاصل از رنگ آمیزی و الگوی قطعه‌قطعه شدن DNA افزایش آپاپتوز سلول‌ها را پس از 72 ساعت قرارگیری در شرایط میکروگراویتی نشان داد. بیان ژن میوستاتین پس از 48 ساعت کاهش (p<0.0001) و پس از 72 ساعت افزایش (P<0.001) یافت. بنابراین مهار بیان میوستاتین در سلول‌های میوتوب می‌تواند یک اقدام موثر در کاهش عوارض مخرب آتروفی عضله اسکلتی در شرایط میکروگراویتی در فضانوردان باشد. نتایج حاصل از این مطالعه می‌تواند به فضانوردان جهت کاهش اثرات منفی شرایط میکروگراویتی کمک کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Simulated Microgravity Condition on Cells Proliferation and Myostatin Gene Expression in Differentiated Skeletal Muscle Cells (C2C12)

نویسندگان [English]

  • Narjes Rahmanian 1
  • Azadeh Hekmat 2
  • Zahra Hajebrahimi 3

1 M.Sc., Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor‎, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Associate Professor, ‎‎Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran

چکیده [English]

Muscle atrophy is one of the problems that astronauts face after returning to earth. Myostatin is a known negative regulator of muscle growth. This study aimed to investigate the effects of simulated microgravity condition on mouse myotube cells (C2C12) growth and the myostatin gene expression. The morphological studies and MTT cytotoxicity assay showed no significant alternation in cells after 48h simulation microgravity, however, after 72h ~40% of cell death accrued (p<0.05). The AO/PI staining and DNA fragmentation analysis confirmed this observation too. Analysis of the gene expression revealed that simulated microgravity reduced myostatin gene expression significantly after 48h (p<0.0001), however, after 72h, increased significantly (P<0.001). So, inhibition of myostatin expression in differentiated myocyte cells of astronauts could be an effective procedure to reduce skeletal muscle atrophy under microgravity condition.

کلیدواژه‌ها [English]

  • Muscle atrophy
  • Mouse myotube cells
  • Microgravity
  • Cell’s growth assay
  • Myostatin
[1]  G. Albrecht-Buehler, “Possible mechanisms of indirect gravity sensing by cells,Gravitational and Space Research, Vol. 4, No. 2, 2007.
[2]  J.J. van Loon, “Some history and use of the random positioning machine, RPM, in gravity related research,Advances in Space research, Vol. 39, No. 7, pp. 1161-1165, 2007.
[3]  J. Vassy, S. Portet, M. Beil, G. Millot, F. Fauvel-Lafeve, A. Karniguian, G. Gasset, T. Irinopoulou, F. Calvo, and J. Rigaut, “Effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF‐7,The FASEB Journal, Vol. 15, No. 6, pp. 1104-1106, 2001
[4]  A. Hekmat, B. Hajati, and Z. Hajebrahimi, “The comparison of the binding parameters of silver nanoparticles to DNA in gravity and microgravity conditions,Journal of Space Science and Technology, Vol. 13, No. 1, pp. 61-70, 2020.
[5]  C. Harding, J. Takemoto, and E. Vargis, “In Vitro Modeling of Microgravity-Induced Muscle Atrophy and Spaceflight Radiation,Utah NASA Space Grant Consortium, 2016.
[6]  I.Y. Kuo, and B.E. Ehrlich, “Signaling in muscle contraction,Cold Spring Harbor perspectives in biology, Vol. 7, No. 2, pp. a006023, 2015.
[7]  P. Bonaldo, and M. Sandri, “Cellular and molecular mechanisms of muscle atrophy,Disease models & mechanisms, Vol. 6, No. 1, pp. 25-39, 2013.
[8]  M. Schuelke, K.R. Wagner, L.E. Stolz, C. Hübner, T. Riebel, W. Kömen, T. Braun, J.F. Tobin, and S.-J. Lee, “Myostatin mutation associated with gross muscle hypertrophy in a child,New England Journal of Medicine, Vol. 350, No. 26, pp. 2682-2688, 2004.
[9]  L.S. Mota, R.A. Curi, D. A. Palmieri, A. S. Borges, C.R. Lopes, J.D. Barbosa, & M.A. Gimenes, “Sequence characterization of coding regions of the myostatin gene (GDF8) from Brazilian Murrah buffaloes (Bubalus bubalis) and comparison with the Bos taurus sequence, Genetics and Molecular Biology, Vol. 29, No.1, pp. 79-82, 2006.
[10]  A.C. McPherron, and S.-J. Lee, “Suppression of body fat accumulation in myostatin-deficient mice,The Journal of clinical investigation, Vol. 109, No. 5, pp. 595-601, 2002.
[11]  C.V.C. Grade, C.S. Mantovani, and L.E. Alvares, “Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation,Journal of animal science and biotechnology, Vol. 10, No. 1, pp. 1-19, 2019.
[12]  J. Rodriguez, B. Vernus, I. Chelh, , I. Cassar-Malek, J.-C. Gabillard, A.H. Sassi, I. Seiliez, B. Picard, and A. Bonnieu, “Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways,Cellular and Molecular Life Sciences, Vol. 71, No. 22, pp. 4361-4371, 2014.
[13]  A. Forterre, A. Jalabert, E. Berger, M. Baudet, K. Chikh, E. Errazuriz, J. De Larichaudy, S. Chanon, M. Weiss-Gayet, and A.-M. Hesse, “Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?,PloS one, Vol. 9, No. 1, pp. e84153, 2014.
[14]  M. Adamian, A. Hekmat, and Z. Hajebrahimi, “The Impacts of Simulated Microgravity on The Cell Viability and Claudin-1 and Claudin-3 Expression of MCF-7 Breast Cancer Cells,Journal of Sciences, Islamic Republic of Iran, Vol. 32, No. 2, pp. 105-114, 2021.
[15]  H. Esmaili Gourvarchin Galeh, N. Delirezh, S.M. Abtahi Froushani, and N. Afzale Ahangaran, “The Effect of Bone Marrow-derived Mesenchymal Stem Cells Pulsed with Vitamin D3 on the Function of Peripheral Blood Neutrophils in Rat,” Qom University of Medical Sciences Journal, Vol. 8, No. 5, pp. 1-8, 2014.
[16]  M. Bizzarri, M. Monici, & J.J. van Loon, “How microgravity affects the biology of living systems,BioMed Research International, Vol. 9, 2015.
[17]  Clément, G., “The Neuro-Sensory System in Space,Fundamentals of Space Medicine ,Vol. 17, pp. 91-138, 2005.
[18]  R. Fitts, S. Trappe,  D. Costill, P.M. Gallagher, A.C. Creer, P. Colloton, J.R. Peters, J. Romatowski, J. Bain, and D.A. Riley, “Prolonged space flight‐induced alterations in the structure and function of human skeletal muscle fibres,The Journal of physiology, Vol. 588, No. 18, pp. 3567-3592, 2010.
[19]  A. Hekmat, M.S. Manesh, Z. Hajebrahimi, and S. Hatamie, “Microgravity-Induced Alterations in the H3.3B (H3F3B) Gene Expression and the Histone H3 Structure,Advanced Science, Engineering and Medicine, Vol. 12, No. 8, pp. 1084-1094, 2020.
[20]  D. Yaffe, and O. Saxel, “Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle,Nature, Vol. 270, No. 5639, 1977, pp. 725-727.
[21]  H.M. Blau, G.K. Pavlath, E.C. Hardeman, C.-P. Chiu, L. Silberstein, S.G. Webster, S.C. Miller, and C. Webster, “Plasticity of the differentiated state,Science, Vol. 230, No. 4727, pp. 758-766, 1985.
[22]  I. Grabowska, A. Szeliga, J. Moraczewski, I. Czaplicka, and E. Brzóska, “Comparison of satellite cell‐derived myoblasts and C2C12 differentiation in two‐and three‐dimensional cultures: changes in adhesion protein expression,Cell biology international, Vol. 35, No. 2, pp. 125-133, 2011.
[23]  T. Patz, A. Doraiswamy, R. Narayan, R. Modi, and D. Chrisey, “Two-dimensional differential adherence and alignment of C2C12 myoblasts,Materials Science and Engineering: B, Vol. 123, No. 3, pp. 242-247, 2005.
[24]  D. Calzia, L. Ottaggio, A. Cora, G. Chiappori, P. Cuccarolo, E. Cappelli, A. Izzotti, S. Tavella, and P. Degan, “Characterization of C2C12 cells in simulated microgravity: Possible use for myoblast regeneration,Journal of cellular physiology, Vol. 235, No. 4, pp. 3508-3518, 2020.
[25]  M.G. Masiello, R.Verna, A. Cucina, and M. Bizzarri, “Physical constraints in cell fate specification. A case in point: Microgravity and phenotypes differentiation,Progress in biophysics and molecular biology, Vol. 134, pp. 55-67, 2018.
[26] H.     Schatten, M.L. Lewis, and A.Chakrabarti, “Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells,Acta astronautica, Vol. 49, No. 3-10, pp. 399-418, 2001.
[27] G. Aleshcheva, J. Sahana, X. Ma, J. Hauslage, R. Hemmersbach, M. Egli, M. Infanger, J. Bauer, and D. Grimm, “Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine,PLoS One, Vol. 8, No. 11, pp. e79057, 2013.
[28] M.L. Lewis, “The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity,Advances in space biology and medicine, Vol. 8, pp. 77-128, 2002.
[29] M.G. Masiello, A. Cucina, S. Proietti, A. Palombo, P. Coluccia, F. D’Anselmi, S. Dinicola, A. Pasqualato, V. Morini, and M. Bizzarri, “Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells,BioMed research international, Vol.2014, pp.1-12, 2014.
[30] M.-O. Baek, C.B. Ahn, H.-J. Cho, J.-Y. Choi, K.H. Son, and M.-S. Yoon, “Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation,Scientific reports, Vol. 9, No. 1, pp. 1-13, 2019.
[31] Y. Yang, A. Creer, B. Jemiolo, and S. Trappe, “Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle, applied physiology‏, Vol. 98, No. 5, pp. 1745-1752, 2005.
[32]  D.L. Allen, D.S. Hittel, and A.C. McPherron, “Expression and function of myostatin in obesity, diabetes, and exercise adaptation,Medicine and science in sports and exercise, Vol. 43, No. 10, pp. 18-28, 2011.
[33]  S.C.Bodine, & L. M. Baehr, “Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1,American Journal of Physiology-Endocrinology and Metabolism‏, Vol. 307, No. 6, pp. E469-E484, 2014.
[34]  Smith, R.C., Cramer, M. S., Mitchell, P. J., Lucchesi, J., Ortega, A. M., Livingston, E. W., ... & Stodieck, L, “Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength, PloS one‏, Vol.15, No.1 2020.
[35]  D.L. Allen, E.R. Bandstra, B.C. Harrison, S. Thorng, L.S. Stodieck, P.J. Kostenuik, S. Morony, D.L. Lacey, T.G. Hammond, and L.L. Leinwand, “Effects of spaceflight on murine skeletal muscle gene expression,Journal of Applied Physiology, Vol. 106, No. 2, pp. 582-595, 2009.
[36]  T. Furukawa, K. Tanimoto, T. Fukazawa, T. Imura, Y. Kawahara, and L. Yuge, “Simulated microgravity attenuates myogenic differentiation via epigenetic regulations,npj Microgravity, Vol. 4, No. 1, pp. 1-8, 2018.