نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار، دانشکده مهندسی برق، دانشگاه خاتم الانبیاء، تهران، ایران

2 دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مقاله به منظور پوشش مخابراتی یک منطقه جغرافیایی وسیع، استفاده از شبکه ای مخابراتی متشکل از یک ماهواره LEO و یک بالن مقید مجهز به مکانیزم نشانه روی آنتن پیشنهاد گردیده است. شبکه ی مخابراتی پیشنهادی قادر است ضمن ایجاد ارتباط مخابراتی میان کاربران موجود در منطقه، داده های جمع آوری شده را به یک مرکز ماموریت خارج از منطقه ارسال و فرامین مورد نیاز را دریافت نماید. در این کار به منظور کنترل و جهت دهی بیم آنتن ها به سوی اهداف مورد نظر، به طراحی کنترل کننده ی سطح دینامیک تطبیقی (ADCS) پرداخته شده است. تعیین مودهای عملیاتی، طراحی الگوریتم مدیریت مود و همچنین، استخراج مسیرهای مرجع متناسب با مودهای عملیاتی، از دیگر موارد مورد بحث در این مقاله می باشند. در این کار همچنین پایداری کراندار غایی (UUB) سیستم حلقه بسته تضمین شده و عملکرد کنترلی نیز با انجام شبیه سازی مورد مطالعه قرار گرفته است. شبکه مخابراتی و سیستم کنترلی پیشنهادی قادر به ایجاد پوشش مخابراتی ناحیه ای وسیع در مناطق دوردست یا شرایط اورژانسی می باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Extensive Regional Telecommunications Coverage in Emergency Condition Using Satellite and Tethered-Balloon Equipped with Antenna Pointing Mechanism – Part 2: Operation Modes and Controller Design

نویسندگان [English]

  • Javad Ranjbar 1
  • Mohammad Fathi 2

1 Assistant Professor, Department of Electrical Engineering. Khatam Al-Anbia University.Tehran. Iran

2 Ph.D., Candidate‎, Department, of Electrical Engineering, University of Science and Technology, Tehran, Iran

چکیده [English]

In this paper, in order to provide telecommunication coverage for a wide geographical area, the use of a network consisting of an LEO satellite and a Tethered-Balloon equipped with antenna pointing mechanism is proposed. The proposed telecommunication network is able to send the collected data to a mission center outside the covered region and receive the required telecommands, while providing a telecommunication link between the users in the covered region. To control and point the antenna beams towards desired targets, an Adaptive Dynamic Surface Controller is designed. Determining the required operating modes, designing a mode management algorithm and extracting the appropriate reference trajectories for each operating mode are among the discussed issues in this paper. The Uniform Ultimate Boundary (UUB) stability of the closed-loop system is proved and the performance of the control system is studied by simulation. The proposed communication network and control system are able to provide wide telecommunication coverage in remote areas or emergency situations.

کلیدواژه‌ها [English]

  • Antenna pointing mechanism
  • Mode management
  • Adaptive dynamic surface controller
  • UUB Stability
[1] S. A. Khaleefa, S. H. Alsamhi, and N. S. Rajput, “Tethered Balloon Technology for Telecommunication, Coverage and Path Loss,” in IEEE Conference on Electrical, Electronics and Computer Science, pp. 1–4, 2014.
[2] A. A. Kanoria and R. S. Pant, “Winged aerostat systems for better station keeping for aerial surveillance,” in IEEE International Conference for Mechanical and Aerospace Engineering, vol. 1, pp. 433–440, 2012.
[3] P. Bilaye, V. N. Gawande, U. B. Desa, A. A. Raina, and R. S. Pant, “Low Cost Wireless Internet Access for Rural Areas using Tethered Aerostats,” in  IEEE International Conference on Industrial and Information Systems., pp. 1–5, 2008.
[4] P. K. Chopra, R. Manchanda, R. Mehrotra, and S. Jain, “A New Topology for Telecom and Broad Band Services in Spars, Remote and Hilly Areas,” WSEAS Trans. Commun., vol. 10, no. 9, pp. 273–286, 2011.
[5] J. L. Hall, “A survey of titan balloon concepts and technology status,” 2011.
[6] S. H. Alsamhi, O. Ma and M. C. Angelides, “Correction to: Performance optimization of tethered balloon technology for public safety and emergency communications,” Telecommunication Systems, vol. 72, no. 1, pp. 155, 2019.
[7] M. Oodo et al., “CAPANINA-Communications from Aerial Platform Networks Delivering Broadband Information for All,” 2005. [Online]. Available: https://www.researchgate.net/ publication/237397137.
[8] R. S. Pant, “Design, fabrication and flight demonstration of a remotely controlled airship for snow scientists,” J. Aerosp. Technol. Manag., vol. 6, no. 1, pp. 1–9, 2014.
[9] R. S. Pant, “Methodology for determination of baseline specifications of a nonrigid airship,” J. Aircr., vol. 45, no. 6, pp. 2177–2182, 2008.
[10] L. Coy, M. R. Schoeberl, S. Pawson, S. Candido, and R. W. Carver, “Global Assimilation of Loon Stratospheric Balloon Observations,” J. Geophys. Res. Atmos., vol. 124, no. 6, pp. 3005–3019, 2019.
[11] M. Fathi and J. Ranjbar, “Extensive Regional Telecommunications Coverage in Emergency Condition using Tethered-Balloon Equipped with Antenna Pointing Mechanism – Part 1: Kinematic and Dynamic Modeling”, Journal of Space Science and Technology, vol. 15, nom. 52, issue 2, 2022. (In Persian)
 [12] S. H. Alsamhi, S. K. Gupta, and N. S. Rajput, “Performance evaluation of broadband service delivery via tethered balloon technology,” ICIIS 11th Int. Conf. Ind. Inf. Syst., vol. 2018-Janua, pp. 133–137, 2016.
[13] J. E. Allnutt and T. Pratt, Satellite communications, 3rd Editio. 2019.
[14] Inc Ibp, World Telecom Companies (Operators) Directory Volume 1 Satellite Communication: Strategic Information and Contacts. IBP USA, 2017.
[15] A. G. Stove, M. S. Gashinova, S. Hristov, and M. Cherniakov, “Passive Maritime Surveillance Using Satellite Communication Signals,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 6, pp. 2987–2997, 2017.
[16] H. B. Li, T. Takahashi, M. Toyoda, Y. Mori, and R. Kohno, “Wireless body area network combined with satellite communication for remote medical and healthcare applications,” Wirel. Pers. Commun., vol. 51, no. 4, pp. 697–709, 2009.
[17] T. C. Chan, J. Killeen, W. Griswold, and L. Lenert, “Information technology and emergency medical care during disasters,” Acad. Emerg. Med., vol. 11, no. 11, pp. 1229–1236, 2004.
[18] M. Z. Hussain and R. Q. Ahmed, “Space Programs of India and Pakistan: Military and Strategic Installations in Outer Space and Precarious Regional Strategic Stability,” Space Policy, vol. 47, no. October 2017, pp. 63–75, 2019.
[19] International Telecommunication Union Focus Group, “Technical Report on Telecommunications and Disaster Mitigation,” 2013.
[20] H. Tumber and F. Webster, Journalists under Fire: Information War and Journalistic Practices. 2006.
[21] Airbus Organization, “Data Sheet: www.space-airbusds.com/en/equipment/antenna-pointing-mechanismequipment-n5x.html,” 2020.
[22] SSTL Organization, “Data Sheet: www.sstl.co.uk/ getattachment/8627793a-3713-4bca-a720-9b28d8d06748 /High-Gain-X-Band-Antenna-Pointing-MechanismTitle,” 2020.
[23] N. Kofinas, E. Orfanoudakis, and M. G. Lagoudakis, “Complete Analytical Forward and Inverse Kinematics for the NAO Humanoid Robot,” J. Intell. Robot. Syst. Theory Appl., vol. 77, no. 2, pp. 251–264, 2015.
[24] R. B. Abraham and A. Klimchik, “Combination of geometric and parametric approaches for kinematic identification of an industrial robot,” Robot. Comput. Integr. Manuf., vol. 71, 2021.
[25] W. Xiang and S. Yan, “Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification,” Acta Astronaut., vol. 169, pp. 158–169, 2020.
[26] M. Hadi Barhaghtalab, V. Meigoli, M. R. Golbahar Haghighi, S. A. Nayeri, and A. Ebrahimi, “Dynamic analysis, simulation, and control of a 6-DOF IRB-120 robot manipulator using sliding mode control and boundary layer method,” J. Cent. South Univ., vol. 25, no. 9, pp. 2219–2244, 2018.
[27] Q. Zong, F. Wang, B. Tian, and R. Su, “Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty,” Nonlinear Dyn., vol. 78, no. 1, pp. 289–315, 2014.
[28] M. Chen, G. Tao, and B. Jiang, “Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems with Input Saturation,” IEEE Trans. Neural Networks Learn. Syst., vol. 26, no. 9, pp. 2086–2097, 2015.
[29] J. Ma, Z. Zheng, and P. Li, “Adaptive Dynamic Surface Control of a Class of Nonlinear Systems with Unknown Direction Control Gains and Input Saturation,” IEEE Trans. Cybern., vol. 45, no. 4, pp. 728–741, 2015.
[30] X. Shi, Y. Cheng, C. Yin, X. Huang, and S. ming Zhong, “Design of adaptive backstepping dynamic surface control method with RBF neural network for uncertain nonlinear system,” Neurocomputing, vol. 330, pp. 490–503, 2019.
[31] X. Xia and T. Zhang, “Robust adaptive quantized DSC of uncertain pure-feedback nonlinear systems with time-varying output and state constraints,” Int. J. Robust Nonlinear Control, vol. 28, no. 10, pp. 3357–3375, 2018.
[32] X. Xia and T. Zhang, “Adaptive output feedback dynamic surface control of nonlinear systems with unmodeled dynamics and unknown high-frequency gain sign,” Neurocomputing, vol. 143, pp. 312–321, 2014.
[33] N. Wang, T. Zhang, Y. Yi, and Q. Wang, “Adaptive control of output feedback nonlinear systems with unmodeled dynamics and output constraint,” J. Franklin Inst., vol. 354, no. 13, pp. 5176–5200, 2017.