نویسندگان

دانشگاه شیراز - عمران

چکیده

امروزه، با در اختیار قرارگرفتن دوربین‌های رقومی با دقت هندسی و رادیومتریک بالا، فصل جدیدی در به‌کارگیری نجوم ژئودتیک در کاربردهای مختلفی نظیر تعیین وضعیت ماهواره، مختصات نجومی و مؤلفه‌های انحراف قائم، تحت عنوان نجوم ژئودتیک بینایی- مبنا گشوده شده است. در روش‌های اخیربا استفاده از یک CCDمناسب و به‌کارگیری تلسکوپی مناسب می‌توان روشی با قابلیت رؤیت‌پذیری بالا برای ثبت ستارگان به‌وجود آورد که برخلاف روش‌های سنتی نجوم ژئودتیک نیازمند انجام مشاهدات طولانی و زمان‌بر و کارشناسان خبره نیست. مسئلة مهم در شناسایی اتوماتیک ستاره در سیستم‌های بینایی- مبنا، دستیابی به روشی سریع با قابلیت اعتماد و دقت بالا در استخراج ستارگان تصویربرداری شده است. در این مقاله، با استفاده از الگوریتم پیشنهادینقطة کلیدها از طریق یک روش فیلترینگ مرحله‌ای در فضای مقیاس مشخص می‌‌شوند. مزیت اصلی این روش مقاوم‌بودن ویژگی‌های محلی تصویر در برابر تغییرات مقیاس و حساسیت کمتر نسبت به نور و تغییرات هندسی است. از ویژگی‌های منحصر به فرد در این روش می‌توان به تعیین مراکز ستارگان بدون در نظر گرفتن شکل تابع توزیع نقطه‌ای (PSF) همچنین استخراج ستارگان با قدر مشخص از تصویر اشاره کرد.

کلیدواژه‌ها

عنوان مقاله [English]

An Adaptive Method for Star Extraction from Digital Astronomical Images

نویسندگان [English]

  • M. A. Sharifi
  • F. Samadzadegan
  • Saeed Saeed Farzaneh

چکیده [English]

Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS) nearly made the celestial positioning system obsolete. The new satellite-based positioning system has been very popular since it is very efficient and convenient for many daily life applications. Nevertheless, the celestial positioning method is never replaced by satellite-based positioning in absolute point positioning sense.The invention of electro-optical devices at the beginning of the 21st century was really a rebirth in geodetic astronomy. Today, the digital cameras with relatively high geometric and radiometric accuracy has opened a new insight in satellite attitude determination and the study of the Earth’s surface geometry and physics of its interior, i.e., computation of astronomical coordinates and the vertical deflection components. In the automatic star detection, high precision and reliable in extraction of the star’s centers from the captured images and corresponding them with the astronomical coordinates is the most important point. In this article, the star’s centers are extracted by the advanced image processing technique with sub-pixel precision. Relating the parameters of the presented technique to star’s Mag is one of it’s exclusive properties

کلیدواژه‌ها [English]

  • PSF
  • photometry
  • geodetic astronomy
  • digital astronomical images
  • scale space
  • differential of Gaussian
  • low pass filter
  • SIFT
  1. Gottfried, G., "Vertical Deflection Monitoring and Azimuth Control CCD Geodesy for Precise Terrestrial Networks," TU Vienna, Inst. of Geodesy & Geophysics, 2003.
  2. Hirt, C. and Bürki, B., Status of Geodetic Astronomy at the Beginning of the 21st Century, Universität Hannover Nr. 258, 2006, pages 81–99.
  3. Juang, J., Kim, H., Junkins, J. L., “An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination,” the John L. Junkins Astrodynamics Symposium (Advances in the Astronautical Sciences), Vol. 115, 2003
  4. Kudrys, J., "Automatic Determination of Vertical Deflection Omponents from GPS and Zenithal Star Observation" Acta Geodyn. Geomater., Vol, 4. No, 4, 2007, pages 169-172.
  5. Rousseau, L. A., Bostel, J. and Mazari, B., "Star Recognition Algorithm for APS Star Tracker: Oriented Triangles," IEEE Aerospace and Electronic Systems Magazine, Vol. 20, No. 2, 2005, pages 27-31.
  6. Gottfried, G. and Helmut, P., "A Small CCD Zenith Camera (ZC-G1) - Developed for Rapid Geoid Monitoring in Difficult Projects" Astron. Obs. Belgrade, No. 75, 2003, Pages 221 – 228.
  7. Damljanovic, G., Cerstbach, G., De Biasi, M. S. and Pejovic, N., "CCD Technique for Longitude / Latitude Astronomy" Astronomical Observatory Belgarde, (Poster) No.75. 2003, pages 229-234.
  8. Howell, S. B., Handbook of CCD Astronomy, Cambridge University Press, 2006.
  9. Brown, M. and Lowe, D. G., ''Invariant Features from Interest Point Groups',' British Machine Vision Conference, Cardiff, Wales, 2002, pages 656-665.
  10. Kuhl, Combined Earth/Star Sensor for Attitude and Orbit Determination of Geostationary Satellite, PhD. Thesis University of Stuttgart, 2005.
  11. Hroch, F. "The Robust Detection of Stars on CCD Images", Experimental Astronomy, Springer Vol, 9, No. 4, 1999, pages 251-259.
  12. Swanzy, M. J., Nalysis and Demonstration: A Proof-of-Concept Compass Star Tracker, Master of Science Thesis, Clifornia Polytechnic State University San Luis Obispo, 2005.
  13. Lowe, G., "Distictive Image Features from Scale-Invariant Keypoints'', International Journal of Computer Vision, Springer, Vol. 60, No. 2, 2004, Pages 91-110.
  14. Witkin, A. P., ''Scale-Space Filtering'', In International Joint Conference on Artificial Intelligence, Germany, 1983, Pages 1019-1022.
  15. Koenderink, J. J., ''The Structure of Images'', Biological Cybernetics, Vol. 50, No. 5, 1984, pages 363-370.
  16. Lindeberg, T., ''Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales'', Journal of Applied Statistics, Vol. 21 No.1 and 2, 1994, Pages 225-270.
  17. Lowe, D. G., ''Object recognition from local scale-invariant features', In International Conference on Computer Vision, Greece, Vol 2, 1999. pages 1150-1157.
  18. [on line], Available: http://www.perthobservatory. wa.gov.au/ information/ po _sky_camera.html
  19. فرزانه، سعید. تشخیص اتوماتیک ستاره در یک سیستم نجوم ژئودتیکی بینایی مبنا، پایان‌نامه کارشناسی ارشد [به راهنمایی استادان محمدعلی شریفی و فرهاد صمدزادگان]، دانشگاه تهران، دانشکدة فنی، گروه نقشه‌برداری، 1388.