نویسنده

چکیده

کانال‌های محافظ موج‌دار، لوله‌هایی هستند که ساختار هندسی آنها به صورت موج‌دار است و برای انتقال سیال در صنایع مختلف استفاده می‌شوند. با توجه به ساختار هندسی پیچیدة آنها، روابط تحلیلی بسیار محدودی برای بررسی رفتار مکانیکی آنها ارائه شده است. در این مقاله ابتدا، روابطی برای تحلیل استحکامی و کمانشی این کانال‌های موج‌دار تحت فشار خارجی و سپس یک الگوریتم برای طراحی این لوله‌ها تحت فشار خارجی ارائه شده است. به‌منظور صحه‌گذاری روابط تحلیلی، نتایج به‌دست آمده از روابط با نتایج حاصل از روش اجزای محدود (با استفاده از نرم‌افزار تجاری ABAQUS) مقایسه و تطابق خوبی بین نتایج مشاهده شد. چند نمونه از این کانال‌ها برای یک کاربرد خاص صنعتی، طراحی و سپس ساخته شد و عملکرد آنها در تست‌های تجربی ارزیابی گردید. فشارهای بحرانی به‌دست آمده از تست، کمتر از مقادیر به‌دست آمده از روابط هستند که می‌تواند ناشی از عیوب ساختی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Design and Fabrication of Protective Corrugated Tunnels for Using in Aerospace Structures

نویسنده [English]

  • Y. Ghaderi-Dehkordi

چکیده [English]

Corrugated tunnel is a pipe, which its outer surface is corrugated and is generally used for fluid transfer in different industries. Owing to complicated geometrical structure of corrugated tunnels, very limited numbers of closed-form equations have been presented for analysis of their mechanical behavior. In the present study, a mathematical model is proposed for strength and buckling analysis of corrugated pipes. In addition, an algorithm is presented for designing of corrugated tunnels. In order to verify the presented model, its results were compared with those obtained by finite element method (the ABAQUS software was used) and a good agreement was observed. Finally, some corrugated tunnels were designed, fabricated and tested for a special industrial application. Critical pressure values obtained from the tests were less than those calculated from the theoretical method, which could be due to fabricated flaws.

کلیدواژه‌ها [English]

  • corrugated tunnel
  • Buckling
  • Design
  • Test
  • Finite Element
  1. Chen, D. H. and Ozaki, S., “Numerical Study of Axially Crushed Cylindrical Tubes With Corrugated Surface,” Thin-Walled Structure, Vol. 47, No. 11, 2009, pp. 1387-1396.
  2. Chen, D. H. and Ozaki, S., “Circumferential Strain Concentration in Axial Crushing of Cylindrical and Square Tubes With Corrugated Surfaces,” Thin-Walled Structures, Vol. 47, No. 5, 2009, pp. 547-554.
  3. Chen, D. H. and Hiratsuka, T., “A Theoretical Analysis of Axial Crushing of Cylindrical Tubes With Corrugated Surface,” Nihon Kikai Gakkai Ronbunshu, A Hen/ Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 73, No. 5, 2007, pp. 603-610.
  4. Chen, D. and Hiratsuka, T., “Study of Axially Crushed Cylindrical Tubes With Corrugated Surface Based on Numerical Analysis,” Nihon Kikai Gakkai Ronbunshu, A Hen/ Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 72, No. 10, 2006, pp. 1464-1471.
  5. Kormi, K. and Duddell, D. A., “Finite Element Method Modelling of the Response of Corrugated Tubular Section to Static and Impactive Axial Loading,” International Conference on Computational Structures Technology - Proceedings, 1994, pp. 97-107
  6. Mahdi, E., Mokhtar, A. S., Asari, N. A., Elfaki, F. and Abdullah, E. J., “Nonlinear Finite Element Analysis of Axially Crushed Cotton Fibre Composite Corrugated Tubes,” Composite Structures, Vol. 75, No. (1-4), 2006, pp. 39-48.
  7. Matsushima, S. and Matsushima, S., “Elastic Deformation Analysis of Corrugated Fiberboard Box Under Uniform Compressive Displacement on Upper and Lower Edges (Elastic Analysis for Square Tube),” Nihon Kikai Gakkai Ronbunshu, A Hen/ Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 72, No. 4, 2006, pp. 535-543.
  8. Abdewi, E. F., Sulaiman, S., Hamouda, A. M. S. and Mahdi, E., “Effect of Geometry on the Crushing Behaviour of Laminated Corrugated Composite Tubes,” Journal of Materials Processing Technology, Vol. 172, No. 3, 2006, pp. 394-399.
  9. Elgalai, A. M., Mahdi, E., Hamouda, A. M. S. and Sahari, B. S., “Crushing Response of Composite Corrugated Tubes to Quasi-Static Axial Loading,” Composite Structures, Vol. 66, No. (1-4), 2004, pp. 665-671.
  10. Bargmann, H. W., “On the Stability of Thin-Walled, Corrugated, Circular Cylindrical Shells Under External Pressure,” Acta Mechanica, Vol. 195, No. (1-4), 2008, pp. 117-128.
  11. Ross, C. T. F. and Humphries, M., “The Buckling of Corrugated Circular Cylinders Under Uniform External Pressure,” Thin-Walled Structures, Vol. 17, No. 4, 1993, pp. 259-271.
  12. Ross, C. T. F. and Heigl, T., “The Buckling of Corrugated Axisymmetric Shells Under Uniform External Pressure American Society of Mechanical Engineers, Petroleum Division, PD 70, 1995, pp. 199-205.
  13. Ross, C. T. F., Apor, G. and Claridge, S. P., “Instability of Circumferentially Corrugated Cylinders Under Uniform External Pressure,” American Society of Mechanical Engineers, Petroleum Division (Publication), 81, No. 9, 1996, pp. 249-255.
  14. Ross, C. T. F., Terry, A. and Little, A. P. F., “A Design Chart for the Plastic Collapse of Corrugated Cylinders Under External Pressure,” Ocean Engineering, Vol. 28, No. 3, 2001, pp. 263-277.
  15. Siad, L., “Buckling of Thin-Walled Orthotropic Cylindrical Shells Under Uniform External Pressure. Application to Corrugated Tin Cans,” Thin-Walled Structures, Vol. 35, No. 2, 1999, pp. 101-115.
  16. Ross, C. T. F., “Collapse of Corrugated Circular Cylinders Under Uniform External Pressure,” International Journal of Structural Stability and Dynamics, Vol. 5, No. 2, 2005. pp. 241-257.
  17. Ross, C. T. F. and Little, A. P. F., “The Buckling of a Corrugated Carbon Fibre Cylinder Under External Hydrostatic Pressure,” Ocean Engineering, Vol. 28, No. 9, 2001, pp. 1247-1264.
  18. Dickson, J. N. amd Brolliar R. H., The General Instability of Ring Stiffened Corrugated Cylinders Under Axial Compression, NASA TN D-3089, January 1966.
  19. Norman, A. D., Seffen, K. A. and Guest, S. D., “Multistable Corrugated Shells,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 464, No. 2095, 2008, pp. 1653-1672.
  20. Matsushima, S. and Matsushima, S., “Relations Between Elastic Bending Deformation Strength, Shape and Elastic Moduli for Case of Anisotropic Corrugated Fiberboard Box Shape (Square Tube) Under Uniform Compression,” Kami Pa Gikyoshi/Japan Tappi Journal, Vol. 61, No. 7, 2007, pp. 86-102.
  21. Chen, D. and Shimizu, Y., “Axially Crushed Square Tubes With Corrugated Surface,” Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 72, No. 11, 2006, pp. 1668-1675.
  22. [online]: available, http://www.corrugated-metals. com, September 14, 2010.
  23. Beer P., Johnston E. R. and DeWolf, J. T., Mechanics of Materials, McGraw-Hill; 4th ed., 2005.
  24. NASA TMX-73306, Astronautic Structures Manual, Vol. II., George C. Marshall Space Flight Center, 1975.
  25. Young C. W. and Budynas G. R., Roark’s Formulas for Stress and Strain, McGraw-Hill, 7th ed. 2002.
  26. Timoshenko S., Strength of Materials-Part II Advanced Theory and Problems, 2nd ed. D. Van Nastrand Company Inc. 1940, 216-224.