نویسندگان

چکیده

شناسایی انواع خرابی سیستم‌ها به خصوص در مورد محصولات حیاتی و حساس و محاسبة قابلیت اطمینان آنها قبل از به‌کارگیری، نقش مؤثری در بهبود طراحی این سیستم‌ها ایفا می‌کند. از سویی دیگر، تخمین قابلیت اطمینان برخی از سیستم‌ها مانند اکثر محصولات فضایی به علت فقدان یا کمبود داده بسیار مشکل و بعضًا نشدنی است. روش شبکه‌های بیزین روش گرافیکی بسیار قوی و کارآ برای تخمین قابلیت اطمینان سیستم‌های پیچیده است که مشکل کمبود داده را نیز از بین می‌برد. بر همین اساس، ‌در این مقاله، ابتدا درخت خطای مربوط به شکست سازة یک ماهواره‌بر سوخت مایع طراحی و سپس به شبکة بیزین تبدیل شده است. در نهایت با استفاده از نظرات خبره‌های سیستم و تخمین پارامترهای شرطی مدل با استفاده از زنجیرة ماکوف مونت کارلو، قابلیت اطمینان کارکرد صحیح سازة یک ماهواره‌بر تخمین زده شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Designing an Estimation Pattern for Reliability of Launch Vehicle Structure with Bayesian Networks

نویسندگان [English]

  • S. M. M. Sharifi
  • H. Gholami Mazinan
  • K. Shahanaghi
  • M. Karbasian

چکیده [English]

Failures identification of vital and sensitive products and their reliability estimation, before applying affects design improvement of them. On the other hand, because of lack of data,reliability estimation of some systems such asspace products is hard and sometimes impossible. Bayesian networks method is a graphical model with high efficiency for reliability estimation of complex systems and it can also eliminate problem of data shortage. Accordingly, at this paper, first, fault tree related to structure of launch vehicle with liquid fuel has been designed and then mapped into Bayesian networks. Finally using expert decision of system and estimation of model conditional parameters with Monte Carol Markov Chain, reliability of launch vehicle structure has been estimated.

کلیدواژه‌ها [English]

  • Reliability
  • fault tree
  • Bayesian networks
  • Expert
  • Launch vehicle structure
  • Monte carlo Markov chain
  1. Bobbio, A. and et.al, “Improving The Analysis of Dependable Systems by Mapping Fault Trees into Bayesian Networks,” Reliability Engineering and  System Safety, Vol. 71, No. 3, 2001, pp. 249-260.
  2. Toledano, J. G. T. and Succar, L. E. S. , “Bayesian Networks for Reliability Analysis of Complex Systems,” Computer Scince, Vol. 1484, No. 465, 1998, pp. 1-17.
  3. Barlow, R. E., “Using Influence Diagrams,” Accelerated Life Testing and Experts’ Opinions in Reliability, 1988, pp.145-150.
  4. Xie, M. and Wohlin, C., “An Additive Reliability Model for the Analysis of Modular Software Failure Data,” Proceedings of the Sixth Interrnational  symposium on Software Reliability Engineering, 1996, pp. 188-193.
  5. Krishnemurthy, S. and Mathur, A. P., “On the Estimation of Reliability of a Software System Using Reliabilities of Its Components,” Proceedings of the Ninth International Symposium on Software Reliability Engineering, 1997, pp.146.
  6. Ghokale, S., Lyu, M. and Trivedi, K., “Reliability Simulation of Component Based Software Systems,” Proceedings of the International Symposium on Software Reliability Engineering, 1998.
  7. Gran, B. A. and et.al, “Estimating Dependability of Programmable Systems Using Bbns,” Proceedings of the Safecomp, 2000, pp. 309-320.
  8. Jensen, F. V., Bayesian Networks and Decision Graphs, New York, Springer, 2001.
  9. Amasaki, S. and et.al, “A Bayesian Belief Network for Assessing Likelihood of Fault Content,” Proceedings of the 14th International Symposium on Software Reliability Engineering, 2003, pp. 215-226.
  10. Boudali, and Dugan, J. B., “A Continuous-Time Bayesian Network  Reliability Modeling and Analysis Framework,” IEEE Trans Reliability, Vol. 55, No.1, 2006, pp. 86-97.
  11. Doguc, O. and Marquez, J. R., “A Generic Method for Estimating System Reliability Using Bayesian Network,” Reliability Engineering and System Safety, Vol. 94, No.2, 2009, pp. 542-550.
  12. Abou Nassar, L. and et.al., “Spacecraft Structures and Launch Vehicles,” A Presentation in Department of Aerospace and Ocean Engineering, Virginia Tech University, 2004.
  13. Stengel, R., “Launch Vehicle Design: Configurations and Structures, Space System Design”, One Course in Department of Mechanical and Aerospace, Princeton University, 2008.
  14. Vesely, W. and Goldbrg, B., Fault Tree Handbook, United State Nuclear Regulatory Commission, 1981.
  15. MIL-HDBK-217F Notice 2, Reliability Prediction of Electronic Equipment, 1995.
  16. MIL-HDBK-H 108, Sampling Procedures and Tables for Life and Reliability Testing (Based on Exponential Distribution), 2002.
  17. MIL-HDBK-338, Electronic Reliability Design Handbook, 1995