نویسندگان

1 دانشگاه علم و صنعت ایران

2 دانشگاه شهید بخشتی - برق و کامپیوتر

چکیده

در این مقاله، یک روش آشکارسازی عیب مقاوم بر اساس تولید حدود آستانة تطبیقی برای یک ماهوارة سه محوره ارائه می‌شود. برای این منظور، در ابتدا سیستم کنترل وضعیت توسط یک مدل با تغییرات شبه پارامتری خطی (q-LPV) توصیف می‌شود. در ادامه یک مشاهده‌گر بازه‌ای بر اساس مدل فوق طراحی شده است که بر اساس آن، عدم‌قطعیت‌های پارامتری ماهواره به درون حدود آستانة اعلان عیب منتقل شده و در نتیجه حدود آستانه تطبیقی به‌دست خواهند آمد. در این مقاله، نشان داده می‌شود که این روش باعث کاهش نرخ اعلان عیب نادرست شده، و نیز عیوب کوچک یا دارای تغییرات شیب‌دار در قیاس با روش‌های ذکر شده به‌طور مؤثرتر تشخیص داده می‌شوند. در بخش دیگر این مقاله، یک الگوریتم جداسازی مبتنی بر روش درخت عیب، همچنین یک سیستم جبران عیب با استفاده از بازپیکربندی عملگرها ارائه شده است. بنابراین بعد از جداسازی چرخ‌های عکس‌العملی معیوب، عملگرهای مغناطیسی مناسب جایگزین آنها می‌شود و در نتیجه خطای کنترل وضعیت، محدود نگاه داشته می‌شود

کلیدواژه‌ها

عنوان مقاله [English]

Design of Adaptive Threshold Based Fault Detection and Isolation for Attitude Control System of a Three Axis Satellite

نویسندگان [English]

  • H. Bolandi 1
  • M. Abedi 2
  • M. Haghparast

1

2

چکیده [English]

This paper presents robust fault detection based on adaptive thresholds for a three axis satellite. For this purpose, first we described the attitude control system (ACS) as a quasi linear parameter model. Next, an interval observer has been designed that based on, effect of the satellite parameter uncertainties has been propagated into the alarm limits and so the adaptive thresholds are generated. In this paper, it is shown that the developed method minimizes the missing alarm rates; also this approach detects small or incipient faults more effectively than the classical fault detection algorithms with constant thresholds. In the next part of paper, we propose an isolation algorithm using the fault tree approach. Also, an accommodation system has been designed based on reconfiguration of available actuators. Accordingly, after isolation of faulty reaction wheels, the accommodation system turns them off and replaces the suitable magnetic tourqers instead of the faulty reaction wheels and so the attitude control error is maintained limited.

کلیدواژه‌ها [English]

  • fault detection
  • Fault Isolation
  • Accommodation
  • Reaction wheels
  • Reconfiguration
  • Adaptive thresholds
  • Interval observer
  1. Castet, J. F. and Saleh, J. H., “Satellite and Satellite Subsystems Reliability: Statistical Data Analysis and Modeling,” Reliability Engineering and System Safety, Vol. 94, No. 11, 2009, pp. 1718-1728.
  2. Patton, R. , “Fault Detection and Diagnosis in Aerospace Systems Using Analytical Redundancy,” Computing and Control Engineering Journal, 1991, pp. 127-136.
  3. Frank, P. M., “Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy-A Survey and Some New Results,” Automatica, Vol. 26, No. 3, 1990, pp. 459-474.
  4. Zhang, Y. and Jiang, J., “Bibliographical Review on Reconfigurable Fault Tolerant Control Systems,” Annual Reviews in Control, Vol. 32, No. 2, 2008, pp. 229-252.
  5. Hwang, I. and Kim, S., “A Survey of Fault Detection, Isolation and Reconfiguration Methods,” IEEE Transactions on Control Systems Technology, Vol. 18, No 3, 2010, pp. 636-653.
  6. Venkatasubramanian, V., Rengaswamy, R. and Kavuri, S. N., “A Review of Process Fault Detection and Diagnosis Part I: Quantitative Model-Based Methods,” Computers &Chemical Engineering, 2003, Vol. 27, No. 3, 293-311.
  7. Pirmoradi, F. N., Sassani, F. and Silva, C. W. D., “Fault Detection and Diagnosis in a Spacecraft Attitude Determination System,” ActaAstronautica, Vol. 65, No. 5-6, 2009, pp. 710–729.
  8. Soken, H. E. and Hajiyev, C., “Pico Satellite Attitude Estimation Via Robust Unscented Kalman Filter in the Presence of Measurement Faults,” ISA Transactions, Vol. 49, No. 3, 2010, pp. 249-256.
  9. Venkateswaran, N., Siva, M. S. and Goel, P. S., “Analytical Redundancy Based Fault Detection of Gyroscopes in Spacecraft Applications,” ActaAstronautica, Vol. 50, No 9, 2002, pp. 535-545.
  10. Patton, R. J., Uppal, F. J., Simani, S. and Polle, B., “Robust FDI Applied to Thruster Faults of a Satellite System,” Control Engineering Practice, Vol. 18, No. 9, 2010, pp. 1093–1109.
  11. Patton, R. J., Uppal, F. J., Simani, S. and Polle, B., “Reliable Fault Diagnosis Scheme for a Spacecraft Attitude Control System,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, Vol. 222, No. 2, 2008, 139-152.
  12. Henry, D., “Robust Fault Diagnosis of the Microscope Satellite Micro-Thrusters,” IFAC Fault Detection, Supervision and Safety of Technical Processes, Beijing, 2006, pp. 342-347.
  13. Jiang, T. and Khorasani, K., “A Fault Detection, Isolation and Reconstruction Strategy for a Satellite’s Attitude Control Subsystem with Redundant Reaction Wheels”, IEEE International Conference on Systems, Man and Cybernetics, Montreal, Que., 2007, pp. 3146-3152.
  14. Wu, Q. and Saif, M., “Robust Fault Diagnosis of a Satellite System Using a Learning Strategy and Second Order Sliding Mode Observer,” IEEE Systems Journal, Vol. 4, No. 1, 2010, pp. 112-121.
  15. Zhang, K., Jiang, B. and Shi, P., “Adaptive Observer-Based Fault Diagnosis with Application to Satellite Attitude Control Systems,” Second International Conference on Innovative Computing, Information and Control, Kumamoto, 2007, pp. 508-508.
  16. Wang, J., Jiang, B. and Shi, P., “Adaptive Observer Based Fault Diagnosis for Satellite Attitude Control Systems,” International Journal of Innovative Computing, Information and Control, ICIC International, Vol. 4, No. 8, 2008, pp. 1921-1929.
  17. Bolandi, H., Haghparast, M. and Abedi, M., “Design of Fault Detection, Identification and Recovery Algorithms for Attitude Control System of a Three Axis Satellite”, Journal of Space Science and Technology, Vol. 5, No. 1, 2012, pp. 29-40.
  18. Khan, A.Q. and Ding, S. X., “Threshold Computation for Fault Detection in a Class of Discrete-Time Nonlinear Systems,” International Journal of Adaptive Control and Signal Processing, Vol. 25, No. 5, 2011, pp. 407-429.
  19. Blesa, J., Puig, V. and Bolea, Y., “Fault Detection Using Interval LPV Models in a Open –Flow Canal,” Control Engineering Practice, Vol. 18, No. 5, 2010, pp. 460-470.
  20. Raissi, T., Videau, G. and Zolghadri, A., “Interval Observer Design for Consistency Checks of Nonlinear Continuous-Time Systems,” Automatica, Vol. 46, No. 3, 2010, pp. 518-527.
  21. Puig, V., Stancu, A., Escobet, T., Nejjari, F., Quevedo, J. and Patton, R. J., “Passive Robust Fault Detection Using Interval Observers: Application to the DAMADICS Benchmark Problem,” Control Engineering Practice, Vol. 14, No. 6, 2006, pp. 621-623.
  22. Oca, S.M.D., Puig, V. and Blesa, J., “Robust Fault Detection Based on Adaptive Threshold Generation Using Interval LPV Observers,” International Journal of Adaptive Control and Signal Processing, Vol. 26, No. 3, 2012, pp. 258-283.
  23. Meseguer, J., Puig, V. and Escobet, T., “Fault Diagnosis Using a Timed Discrete-Event Approach Based on Interval Observers: Application to Sewer Networks,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, Vol. 40, No. 5, 2010, pp. 900-916.
  24. Puig, V., Quevedo, J., Escobet, T., Nejjari, F. and Heras S. D. L., “Passive Robust Fault Detection of Dynamic Processes Using Interval Models,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 5, 2008, pp. 1083-1089.
  25. Blesa, J., Puig, V. and Saludes, J.,” Identification for Passive Robust Fault Detection Using Zonotope-Based Set-Membership Approaches,” International Journal of Adaptive Control and Signal Processing, Vol. 25, No. 5, 2011, pp. 788-812.
  26. Sidi, M. J., Spacecraft Dynamics and Control, Cambridge University Press, New York, pp. 88-95, 1997.
  27. Jaulin, L., Kieffer, M., Didrit, O. and Walter, E., Applied Interval Analysis, Springer, London, pp. 11-42, 2001.